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1 Motivation

•There are many examples where the 2-norm er-
ror minimization in LP analysis does not work
well, i.e. when the excitation is not Gaussian.

• In this case the usual approach is to find coeffi-
cients for the short-term and long-term signal
correlation in two different steps. This obvi-
ously leads to inherently suboptimal solutions.

•From an estimation point of view, this subop-
timality leads us to define a more appropriate
analysis model.

•The 2-norm minimization shapes the residual
into variables that exhibit Gaussian-like char-
acteristics; however, so-called sparse coding
techniques have been used, for example, in
early GSM standards and more recently also
in audio coding to quantize the residual. In
these techniques the residual is encoded using
only few non-zero pulses.

• In this case and quantization-wise in general,
we can reasonably assume that the optimal
predictor is not the one that minimizes the 2-
norm but the one that leaves the fewest non-
zero pulses in the residual, i.e. the sparsest
one.

2 Fundamentals

•The class of problems considered as those cov-
ered by the optimization problem associated
with finding the prediction coefficient vector
a ∈ R

K from a set of observed real samples
x(n) for n = 1, . . . , N so that the error is min-
imized:

min
a

‖x − Xa‖p
p + γ‖a‖k

k,

where ‖ · ‖p is the p-norm defined as ‖x‖p =

(
∑N

n=1 |x(n)|p)
1
p for p ≥ 1.

•The question then is how to choose p, k and γ
and how to perform the associated minimiza-
tion, depending on the kind of application.

•Sparseness is often measured as the cardinality
(so-called 0-norm ‖ · ‖0). Unfortunately this is
a combinatorial NP-hard problem. Instead of
the cardinality measure, we then use the more
tractable 1-norm ‖ · ‖1.

•The regularization term γ in our mathemati-
cal framework is somehow related to the prior
knowledge we have of the coefficients vector
a , therefore is clearly the maximum a poste-

riori (MAP) approach for finding a under the
assumptions that a has a Generalized Gaussian
Distribution:

aMAP = arg max
a

f (x|a)g(a)

= arg max
a

{exp(−‖x − Xa‖p
p) exp(−γ‖a‖k

k)}.

3 Sparse Linear Predictors

3.1 Finding a Sparse Residual

•Problem definition:

min
a

‖x − Xa‖1.

•ML approach when the error sequence is con-
sidered to be a set of i.i.d. Laplacian random
variables: outperforms the 2-norm in finding a
more proper linear predictive representation in
voiced speech.

•Helpful against over-emphasis on peaks and
cancellation of errors in voiced speech.

• Invariant to pitch and phase shifts as it goes
after the true nature of the formant excitation.

3.2 Finding Sparse Coefficients

•Problem definition:

min
a

‖x − Xa‖2
2 + γ‖a‖1.

•With a high prediction order the resulting co-
efficient vector a will be highly sparse.

•An AR filter having a sparse structure is an
indication that the polynomial can be factored
into several terms where one of these exhibits
comb-like characteristics: the long term pre-
dictor P (z) = 1 − gpz

−Tp often used in speech
processing is an example.

4 Numerical Experiments

An excitation similar to the impulse response
of the long term predictor is found for voiced
speech when we look for a sparse residual, see
figure below.
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Residuals for 1-norm and 2-norm minimization.

It is also easy to see that the 2-norm minimiza-
tion introduces high emphasis on peaks in its
effort to reduce large errors: in this case the
outliers due to the pitch excitation, as we can
see clearly in the figure below.
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Frequency response of the filters obtained with 1-norm and 2-norm mini-
mization.

In the second approach, we were able to see that
using 0.1 ≤ γ ≤ 1, the predictive vector a is

similar to the multiplication of the short-term
prediction filter and long-term prediction filter
usually obtained in cascade.
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Comparison of the prediction coefficients (excluding the 0th-order) obtained
with our algorithm (top), with usual LP (order 50) and with the convolution of
the short-term and long-term coefficients vectors.

5 Discussion

The main issues of the absolute error approach
have been pointed by Denoël and Solvay:

•Non-uniqueness of the solution.

•Stability not guaranteed.

•Computationally expensive

We can argue that:

•Due to the convexity of the cost function, we
can easily state that all the possible multiple
solutions will still be optimal.

•By choosing an appropriate windowing of the
analyzed signal the percentage of non-stable
filters was less then 0.1% in over 10,000 frames
analyzed.

•Finding the solution using a modern interior
point algorithm showed to be comparable to
solving around 10-15 least square problems but
further analysis processes can be highly simpli-
fied by the characteristics of the output.

6 Conclusion

•These methods are particularly attractive for
the analysis and coding of stationary voiced
signal but the extension of the obtained results
to unvoiced signal seemed to be straightfor-
ward and will be subjected to further analysis.

•Considering other convex estimators will easily
bring to new studies based on different con-
cepts of sparseness.
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