The echo does not really affect the intelligibility of the conversation.

3.1 Echo Detector

from the near-end x and one coming from the far-end y, supposedly belonging to the same speaker. The VAD flag informs us where the speech is present.

First estimate of network delay $\hat{\tau}$:

$$\arg \max_{\tau} \sum_{i}(1)E[x(n + \tau) - \mu_x]y(n) - \mu_y)]^2$$

calculated for each possible delay $\tau = 0, \ldots, 50$ on each ith feature and averaged.

Iterative updating of the network delay estimate $\hat{\tau}$

$$cc_L(n, \tau) = \frac{1}{1 + \tau} \sum_{i=0}^{\tau} \frac{1}{\sqrt{E[x(n)g(y(n + \tau))]}E[y(n)]}$$

with $\tau = 0, \ldots, 20$. Done if at the nth subframe, $VAD_L(n) = 1$ and $VAD_L(n + \tau_0) = 1$. The two important values obtained are:

$$cc(n) = \text{max[cc_L(n, \tau)]}$$
$$\delta_\tau = \arg \max_{\tau} \text{cc}_L(n, \tau)$$

δ_τ is used to update the delay, and $cc(n)$ is considered as the echo-likelihood parameter. The update of the delay by δ_τ will be only done if $cc(n) > 0.85$.

3.2 Double Talk Detection

Two Gaussian pdfs for $cc(n)$ in the presence and absence of double talk are defined and then weighted by $P(DTD) = 0.05$ and $P(DTDD) = 0.95$. An optimal fixed threshold is then found $cc_{DTDD} = 0.42$.

Cancellation algorithms will only work for $cc(n) > cc_{DTD}$.

4 AEC Algorithms

The conditions for the AEC algorithm to be operative are that the voice activity detectors on the aligned temporal axis are both high $VAD_L(n + \tau_0) = 1$ and $VAD_L(n) = 1$ and only the echo is present $cc(n) > cc_{DTD}$.

4.1 g_p and g_n modifications

Use of Normalized Least Mean Square algorithm with step-size $1.5 \cdot cc(n)$ (for convergence)

General assumption: $g_p(n) \approx g(n) + g_0(n) + g_{0n}(n)$

Considering

$$g_p(n) = \frac{L-1}{L} g(n) - \frac{1}{L} h(l) = h^T g_i(n)$$

h is being adapted at time $n+1$ with the following NLMS procedure:

$$h(n + 1) = h(n) + 1.5 \cdot cc(n) \frac{g_p(n) - \hat{g}(n)}{\sum_{i} g_i(n) g_i(n)}$$

Thus, the signal g_p coming out of the canceller will be:

$$g_p(n) = g(n) - g_0(n) = g(n) - h(n) g_i(n)$$

4.2 T_p and $\{L_i\}$ modifications

Eliminate the long-term information by randomizing the value of T_p:

$$T_p = \tau$$
$$\Omega_T = \{17, 18, \ldots, 142, 143\}$$

Whitening of the signal by morphing the LPC spectrum (done in the LF domain):

$$L_s(n) = cc(n) \frac{1}{\sum_{i} g_i(n) g_i(n)} (1 - cc(n))L(n)$$

5 Results

The main problems of the AEC algorithm implemented happen as the ERL becomes too high or the SNR becomes too low, however in these cases the echo does not really affect the intelligibility of the conversation.

6 Conclusion

It is possible to transpose AEC operations from time domain to parameters domain

Suitable for implementation in speech enhancement equipments in voice networks and using AMR coded speech

A good alternative to the existing AEC procedures

References
