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Introduction

• Typically the prediction coefficients are found such that the norm-2 of the 
residual is minimized 

Maximum likelihood approach when the excitation is considered
to be white Gaussian and identically distributed

• Problems
Excitation is not always Gaussian (ex. for voiced speech

excitation is best represented by a pulse train)
Residual not easy to quantize

• Our idea is to use a linear prediction scheme that leaves a sparse residual 
rather than a minimum variance one

More efficient quantization!



Fundamentals

• Mathematically we can state the class of problems as those covered by the optimization problem:
Finding the prediction coefficient vector given set of observed real samples

(ex.                         standard LP, autocovariance method )

• Sparseness usually measured using the cardinality, which results in intractable (NP-hard) problems.
Instead we use the more tractable Norm-1

(ex.                         ML for laplacian excitation )

• can have different interpretation:

Regularization term including prior knowledge about the coefficients 
Minimization interpretation where gamma operates as a Lagrange multiplier
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Some Properties of Norm-1 LP Analysis

• Less influenced by outliers
good for impulse train estimation

• Stability NOT guaranteed
Use of sub-optimal stable methods (BURG)
Other tricks (bandwidth expansion, poles reflection) 

• Non-uniquess of the solution (there may be a stable solution in the set…)

• Easily solved using standard linear programming 
(or convex programming for alternative formulations)
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Example of Applications: 
Joint Short & Long Term Linear Prediction

Considering the minimization problem:

With:  

Using a high prediction order (ex. 30-40) and a high number of samples (300-
400 @8KHz) 
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We will have a sparse coefficient vector (50-60% null) factorizable in STLP 
and LTLP
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Example of Applications: 
Joint Short & Long Term Linear Prediction
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Conclusions

• Sparse Linear Prediction based on Convex Optimization can be a 
breakthrough in Speech Coding

• Residual adapted for the quantizer, rather than the other way 
around

• Takes into account statistical properties ignored by the usual LP

• Main drawbacks:
• Computational load still a bit heavy 

(1 Norm-1 minimization problem ~ 20-30 LS problems!)
• Stability NOT guaranteed

• It’s still a “work in progress” but it gave interesting results so far…
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