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Abstract

The standard linear prediction method exhibits spectral matching
properties in the frequency domain due to Parseval’s theorem [1]:

∞∑
n=−∞

|e(n)|2 =
1

2π

∫ π

−π
|E(ejω)|2dω. (1)

It is also interesting to note that minimizing the squared error in the
time domain and in the frequency domain leads to the same set of
equations, namely the Yule-Walker equations [3]. To the best of our
knowledge, the only relation existing between the time and frequency
domain error using the 1-norm is the trivial Hausdorff-Young inequal-
ity [2]:

∞∑
n=−∞

|e(n)| <
1

2π

∫ π

−π
|E(ejω)|dω, (2)

which implies that time domain minimization does not corresponds to
frequency domain minimization. It is therefore difficult to say if the 1-
norm based approach is always advantageous compared to the 2-norm
based approach for spectral modeling, since the statistical character
of the frequency errors is not clear. In this notes, we provide a proof
sketch for a possible spectral interpretation of the linear prediction
based on the 1-norm error minimization criterion.
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1 Linear Prediction of Speech

Linear prediction of speech assumes that a sample of the time serie x(n),
assumed to be reduntant and stationary, obtained by sampling a continuous
speech signal x(t) can be represented as a linear combination of the previous
samples and some error signal e(n) [4, 1]:

x(n) =
K∑

k=1

akx(n − k) + e(n), (3)

In other words, we can consider the time series x(n) as generated by all-pole
filtering an excitation signal e(n) through the filter:

H(z) =
1

1 −∑K
k=1 akz−k

=
1

A(z)
, (4)

Given the signal x(n) the problem is to determine the prediction coefficients
vector a = [a1, a2, . . . , aK ]: this is usually done by minimizing the error
according to some criterion. We can construct the cost function as depending
from the coefficient vector:

e(n) = x(n) −
K∑

k=1

akx(n − k) for n = N1, . . . , N2 (5)

therefore the problem in (5) can be rewritten as a minimization problem:

min
a

‖e‖p
p = min

a

‖x − Xa‖p
p (6)

having:

x =

⎡
⎢⎣

x(N1)
...

x(N2)

⎤
⎥⎦ ,X =

⎡
⎢⎣

x(N1 − 1) · · · x(N1 − K)
...

...
x(N2 − 1) · · · x(N2 − K)

⎤
⎥⎦ (7)

and ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N

n=1 |x(n)|p) 1

p for p ≥ 1.
Even if we did not make any statistical assumption about the signal,

by doing this we have actually assumed that the error vector has a gener-
alized Gaussian distribuition [5] with variables indipendent and identically
distributed:

p(e) ∝ exp−(λ‖e‖p
p) (8)
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We can see this clearly by approaching the linear prediction problem as a
maximum-likelihood (ML) estimation of parameters (8):

max
a

p(e) = max
a

p(x|a) = min
a

ln(p(x|a)) = min
a

‖x − Xa‖p
p = min

a

‖e‖p
p (9)

same conclusion as in (6).

2 Spectral Matching Properites of 2-norm based

linear prediction of speech

Having considered the signal x(n) generated by an auto-regressive process,
we can rewrite (5) in the z−transform domain:

E(z) =

[
1 −

K∑
k=1

akz
−k

]
X(z) = A(z)X(z) (10)

Assuming x(n) deterministic, we can apply the Parseval’s theorem, the total
error to be minimized is then given by:

E =
∞∑

n=−∞

e2(n) =

∫ 1/2

−1/2

|E(ej2πf )|2df (11)

where E(ej2πf ) is obtain evaluating E(z) on the unit circle z = ej2πf . De-
noting the power spectra of the signal as:

Ŝxx(f,x) =
|E(ej2πf )|2
|A(ej2πf )|2 (12)

and its approximation as:

Sxx(f) =
σ2

|A(ej2πf )|2 . (13)

We can easily see that the spectrum |E(ej2πf )|2 is being modelled by a flat
spectrum with magnitude σ2, this means that the error signal obtained with
2-norm minimization is an approximation of a white noise, because of this
A(z) is sometimes known as “whitening filter”. From (11,12,13) we obtain
that the total error can be rewritten as:

E = σ2

∫ 1/2

−1/2

Ŝxx(f,x)

Sxx(f)
df (14)
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Thus, minimizing the total error E is equivalent to the minimization of the
integrated ratio of the signal spectrum Ŝxx(f,x) by its approximation Sxx(f).
The way the spectrum Ŝxx(f,x) is being approximated by Sxx(f) is largely
reflected in the relation between the corresponding autocorrelation functions.
Knowing that r(k) = r̂(k) [1] for k = 1, . . . , K and that the autocorrelation
of x(n) is the fourier transform of its spectrum:

r̂(k) =

∫ 1/2

−1/2

Ŝxx(f,x)ej2πfkdf (15)

and r(k) is the autocorrelation of the impulse response of (4) and also the
fourier transform of Sxx(f), it follows that increasing the value of the order
of the model K increases the range over r̂(k) and r(k) are equal resulting
in a better fit of Sxx(f) to Ŝxx(f,x). Hence, for K → ∞ the two spectra
become identical:

Sxx(f) = Ŝxx(f,x) as K → ∞ (16)

3 Linear Prediction Based on the Least Square

Error

The most used error minimization criterion is the method of least squares
(p = 2 in (6)), this method corresponds to the maximum likelihood approach
when the error signal (or, the excitation of the filter in (4)) is considered to
be a set of i.i.d. Gaussian variables:

e ∼ N(0,Ce) (17)

where Ce = σ2I is a identity matrix multilpied by a costant that corresponds
to the variance of the error. One of the reasons for the Gaussian assumption
lies in the maximum entropy principle which states that for known values of
the first and second moments of a random process, the specific joint probabil-
ity density which has the largest entropy is the Gaussian probability density.
From the definition, the log-pdf will be:

ln p(e) = −N

2
ln 2π − 1

2
|Ce| − 1

2
eTC−1

e e (18)
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If we solve (18) by maximazing ln p(e), considering that e = x − Xa we
obtain:

aML = arg min
a

{[x − Xa
]
TC−1

e

[
x − Xa ]} (19)

that has a closed-form unique solution:

aML =
(
XTC−1

e X
)−1

XTC−1
e x (20)

This becomes, considerng Ce = σ2I:

aML =
(
XTX

)−1
XTx (21)

We would like to calculate the probability density function (pdf) as a
function of the power spectral density (PSD). Knowing that filtering linearly
a white Gaussian process outputs a signal that is still Gaussian process but
not (or not necessarly) white, we can model the signal pdf as:

x ∼ N(0,Cxx) (22)

with Cxx that is no more a diagonal matrix (variables not uncorrelated and
not indipendent). The log-pdf would be:

ln p(x) = −N

2
ln 2π − 1

2
|Cxx| − 1

2
xTC−1

xx x (23)

and each term can be made dependent from the PSD thanks to the asymp-
totic relations (for N → ∞) [6]:

|Cxx| =
N∏

k=1

λk(Cxx) �
N−1∏
k=0

Sxx

(
2π

N
k

)
(24)

and:

C−1
xx =

N∑
k=1

1

λk(Cxx)
qkq

H
k �

N−1∑
k=0

1

Sxx(
2π
N

k)
vkv

H
k (25)

with vk being a sinusoid that makes k cycles in N samples:

vk =
1√
N

[
1, exp

(
j
2πk

N

)
, . . . , exp

(
j
2π(N − 1)

N

)]T

(26)

5



Substituting the relations into (23) we obtain:

ln p(x) = −N

2
ln 2π − 1

2

N−1∑
k=0

(
ln Sxx

(
2π

N
k

)
+

∣∣vH
k x
∣∣2

Sxx(
2π
N

k)

)
(27)

Noting that:

vH
k x = DFTN(x)|ωk

=
1√
N

X(ωk) (28)

and ∣∣vH
k x
∣∣2 =

1

N
|X(ωk)|2 = Ŝx(ωk,x) (29)

represent a trasformation of the observations (the DFT) that corresponds
with the periodogram, we can rewrite (27) as:

ln p(x) = −N

2
ln 2π − 1

2

N−1∑
k=0

(
ln Sxx

(
2π

N
k

)
+

Ŝxx(ωk,x)

Sxx(
2π
N

k)

)
(30)

In this form, it can result hard to understand, so multiplicating and dividing
the second term for the band unit 1/N we have:

ln p(x) = −N

2
ln 2π − N

2

N−1∑
k=0

1

N

(
ln Sxx

(
2π

N
k

)
+

Ŝxx(ωk,x)

Sxx(
2π
N

k)

)
(31)

that for N → ∞ becomes:

ln p(x) � −N

2
ln 2π − N

2

∫ 1/2

−1/2

ln Sxx (f) +
Ŝxx(f,x)

Sxx(f)
df (32)

This is the asymptotic relation that holds until N is sufficiently large (ideally
N → ∞).

In the case of auto-regressive (AR) parametric spectral estimation, the
PSD depends on a set of deterministic parameters θ that are the recursive
component of the filter a = [a(1), . . . , a(K)]T and the scaling factor σ2:

Sxx(f |θ) =
σ2

|A(f |a)|2 θ = [a, σ2]T ∈ RK+1 (33)
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the log-likelihood for the ML estimation becomes substituting (33) in (32):

ln p(x|θ) �− N

2
ln 2π − N

2
ln(σ2) +

N

2

∫ 1/2

−1/2

ln |A(f |a)|2df−

N

2σ2

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df

(34)

For monic polynomials (with a(0) = 1) we have
∫ 1/2

−1/2
ln |A(f |a)|2df = 0, (34)

therefore becomes:

ln p(x|θ) � −N

2
ln 2π − N

2
ln(σ2) − N

2σ2

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df (35)

Putting the first gradient to zero in respect to σ2:

δ ln p(x|θ)

δσ2
= 0 → − N

2σ2
+

N

2σ4

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df (36)

and therefore:

σ̂2 = σ̂2(a) =

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df (37)

we have the the power depends on the recursive part of the filter a. Sobsti-
tuting into the log-likelihood function (35):

ln p(x|a, σ̂2(a)) � −N

2
(1 + ln 2π) − N

2
ln σ2(a) (38)

this means that maximizing ln p(x|a, σ̂2(a)) corresponds to minimizing σ2(a).
It is now clear that the Gaussian maximum-likelihood estimation of the pa-
rameters that generated the signal x(n) corresponds to minimizing the inte-
grated ratio of the signal spectrum Ŝxx(f,x) to its approximation Sxx(f |θ)
(33). Proceeding with the calculations of the gradients (always assuming
a ∈ RK):

δσ2(a)

δa(k)
=

δ

δa(k)

∫ 1/2

−1/2

A(f |a)A∗(−f |a)Ŝxx(f,x)df (39)
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applying the properties of the derivative in the product of functions and
developing the calculations, knowing that Ŝxx is real, we obtain that solving
(39) is equivalent to solve:

∫ 1/2

−1/2

A(f |a)Ŝxx(f,x)ej2πfndf = 0 (40)

developing the calculations:

∫ 1/2

−1/2

Ŝxx(f,x)ej2πfndf +
K∑

k=1

a(k)

∫ 1/2

−1/2

Ŝxx(f,x)ej2πf(n−k)df = 0 (41)

the periodogram Ŝxx(f,x) is the Fourier transform of the sampled autocor-
relation function (biased), therefore through (41) we will obtain the Yule-
Walker equations written now respect to the autocorrelation function [7]:

r̂(k) +
K∑

k=1

a(k)r̂(n − k) = 0 for k = 1, . . . , K (42)

We can also see that:

σ̂2(â) = r̂(0) +
K∑

k=1

a(k)r̂(k) (43)

4 Linear Prediction Based on the Least Ab-

solute Error

Assuming that the process is Gaussian is based upon the fact that the Gaus-
sian assumption is often sufficient for tractable mathematics, but also is based
upon a very liberal view of the central limit theorem, which may be loosely
stated: “almost any random process put into almost any linear system will
come out almost Gaussian.”

The linear prediction method based on the least absolute error has only
recently started to be used as it does not have a closed form solution as the
least square method (20) that can be solved easily. Neverthless, it seems to
be really interesting when dealing with the representation of voiced speech
were the excitation can be better represented by a sparse impulsive signal.
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The method introduced in this section corresponds to the assumption
that the error signal has a Laplacian probability density function, then the
speech signal analyzed will still have a Laplacian distribuition [8]:

x ∼ L(0,Cxx) (44)

The Laplacian pdf, differently from the Gaussian, does not have a simple
closed form that includes the covariance matrix of the analyzed signal. Al-
thought many studies have been made in order to fill this gap. According to
[9]:

p(x) =
2

(2π)N/2|Cxx|1/2

(
xTC−1

xx x

2

)−N/4+1/2

KN/2−1

(√
2xTC−1

xx x
)

(45)

where KN/2−1

(√
2xTC−1

xx x
)

denotes the modified bessel function of the sec-

ond kind and order N/2−1 evaluated at
√

2xTC−1
xx x. Noting that the Bessel

function, for
√

2xTC−1
xx x sufficiently large, behaves like:

KN/2−1

(√
2xTC−1

xx x
)
�
√

π

2
√

2xTC−1
xxx

exp
(
−
√

2xTC−1
xx x
)

(46)

we can rewrite the pdf as:

p(x) � 2

(2π)N/2|Cxx|1/2

(
xTC−1

xx x

2

)−N/4+1/2√
π

2
√

2xTC−1
xx x

exp
(
−
√

2xTC−1
xx x
)

(47)
to make it more clear we can rewrite ans set G = 1/

√
2πN−1:

p(x) � G

(
2xTC−1

xx x
)−N/4+1/4

exp
(
−√2xTC−1

xx x
)

|Cxx|1/2
(48)

The log-likelihood function becomes:

ln p(x) = ln G − N − 1

4
ln
(
2xTC−1

xx x
)−√2xTC−1

xx x − 1

2
ln |Cxx| (49)

using the asymptotic relations in (24) and (25) and multiplying and dividing
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by the band unit1/N we can rewrite as:

ln p(x) � ln G − N − 1

4
ln

(
2N

∫ 1/2

−1/2

Ŝxx(f,x)

Sxx(f)
df

)
−

√
2N

∫ 1/2

−1/2

Ŝxx(f,x)

Sxx(f)
df − N

2

∫ 1/2

−1/2

ln |Sxx (f) |df
(50)

Substituting the relations of (33) and remembering that for monic polyno-

mials
∫ 1/2

−1/2
ln |A(f |a)|2df = 0, we obtain:

ln p(x|θ) � ln G − N − 1

4
ln

(
2N

σ2

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df

)
−

√
2N

σ2

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df − N

2
ln
(
σ2
) (51)

evaluating the first derivative of (51) with respect to σ2 brings us to the
following result:

σ2 =
2N

N − 1

(
2N

∫ 1/2

−1/2

|A(f |a)|2Ŝxx(f,x)df

)
(52)

which means that spectral flatness measure for K → ∞ is identical for both
the 2-norm and 1-norm error minimization criterion.
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