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ABSTRACT

This paper describes a novel speech coding concept created by in-
troducing sparsity constraints in a linear prediction scheme both on
the residual and on the prediction vector. The residual is efficiently
encoded using well known multi-pulse excitation procedures due to
its sparsity. A robust statistical method for the joint estimation of the
short-term and long-term predictors is also provided by exploiting
the sparse characteristics of the predictor. Thus, the main purpose
of this work is showing that better statistical modeling in the context
of speech analysis creates an output that offers better coding prop-
erties. The proposed estimation method leads to a convex optimiza-
tion problem, which can be solved efficiently using interior-point
methods. Its simplicity makes it an attractive alternative to com-
mon speech coders based on minimum variance linear prediction.

1. INTRODUCTION

Linear prediction (LP) is an integral part of many modern speech
coding systems and is commonly used to estimate the autoregres-
sive (AR) filter parameters describing the spectral envelope of a
segment of speech. Typically, the prediction coefficients are found
such that the 2-norm of the difference between the observed signal
and the predicted signal is minimized [1]. However, the minimiza-
tion criterion has been shown to be not optimal in many cases. For
example, in voiced speech, when the excitation is not Gaussian, the
estimation of the short-term spectrum is contaminated by the spec-
tral fine structure due to the presence of a pitch excitation. In this
case, the usual approach is to find coefficients for the short-term and
long-term signal correlation in two different steps leading to inher-
ently suboptimal solutions. Furthermore, the 2-norm minimization
shapes the residual into variables that exhibit Gaussian-like charac-
teristics; however, in order to encode the residual efficiently, usually
only few non-zero pulses are used. We can then reasonably assume
that the ideal predictor is not the one that minimizes the 2-norm but
the one that leaves the fewest non-zero pulses in the residual, i.e.
generates the sparsest residual.

In this paper, we present a method for estimating jointly the
short-term and long-term predictors that results in a sparse residual.
With this, we transcend the well known problems related to tradi-
tional LP based coding discussed above. The novelty introduced is
then to exploit the sparse characteristics imposed by the new linear
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predictive scheme on the predictor and on the residual in order to de-
fine, in the latter stage, a more efficient quantization. The strength
of our method is seen when these characteristics are used to realize
a low bit rate coder that keeps the perceptual quality at high levels.

The paper is organized as follow. We first outline the mathe-
matical formulations of the proposed algorithms. The core of the
paper is dedicated to introducing the speech coding procedure and
showing the performance results obtained with this technique. Then
we will discuss and illustrate advantages and disadvantages of this
method before concluding on our work.

2. SPARSE LINEAR PREDICTION

The estimation problem considered in this paper are based on the
following autoregressive (AR) model, where speech signal sample
x(n) is written as a linear combination of past samples:

x(n) =
K

∑
k=1

akx(n−k)+e(n). (1)

Where{ak} are the prediction coefficients ande(n) is the excitation
of the corresponding AR filter. We consider the optimization prob-
lem associated with finding the prediction coefficient vectora∈R

K

from a set of observed real samplesx(n) for n = 1, . . . ,N so that
the prediction error is minimized [2]. The prediction error vector
ê = x−Xâ is commonly referred to as the residual which is an es-
timate of the excitatione, obtained from some estimatêa resulting
from the following minimization problem:

min
a

‖x−Xa‖p
p + γ‖a‖k

k, (2)
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and ‖ · ‖p is the p-norm defined as‖x‖p = (∑N
n=1 |x(n)|p)

1
p for

p ≥ 1. The start and end pointsN1 andN2 can be chosen in var-
ious ways assuming thatx(n) = 0 for n < 1 andn > N. For exam-
ple, consideringp = 2 andγ = 0 (maximum likelihood approach
when the excitation is a sequence of i.i.d. Gaussian random vari-
ables), settingN1 = 1 andN2 = N+K will lead to the autocorrela-
tion method equivalent to solving the Yule-Walker equations, while
settingN1 = K + 1 andN2 = N leads us to the covariance method
[3].

The question then is how to choosep, k andγ and how to solve
the corresponding minimization problem, depending on the kind of
applications we want to implement. In finding a sparse signal repre-
sentation, there is the somewhat subtle problem of how to measure
sparseness. Sparseness is often measured as the cardinality, corre-
sponding to the so-called 0-norm‖ · ‖0. Therefore, usingp = 0 in



(2) means that we would like to minimize the number of non-zero
samples in the error vector. Unfortunately this is a combinatorial
problem which generally cannot be solved in polynomial time. In-
stead of the cardinality measure, we then use the more tractable 1-
norm‖ · ‖1 widely used as a linear programming relaxation of this
problem [4]. Whenp= 1 andk = 1, our optimization problem then
becomes:

min
a

‖x−Xa‖1 + γ‖a‖1. (3)

This optimization problem can be posed as a linear programming
problem and can be solved using an interior-point algorithm [2].
The introduction of the regularization parameterγ in (2) is inti-
mately related to thea priori knowledge that we have on the co-
efficients vector{ak} or, in other words, to how sparse{ak} is,
considering the 1-norm as an approximation of the 0-norm. Fur-
thermore, from a Bayesian point of view, this may be interpreted as
themaximum a posteriori(MAP) approach for finding{ak} under
the assumption that the coefficients vector and the error vector are
both i.i.d. Laplacian sets of variables:

aMAP =argmax
a

f (x|a)g(a)

=argmax
a

{exp(−‖x−Xa‖1)exp(−γ‖a‖1)}.
(4)

3. BASIC CODING STRUCTURE

The core of the speech coder is based on the optimization problem
(3) seen in the previous section. In order to obtain appropriate so-
lutions, we have to choose a proper regularization parameterγ in
order to obtain the best statistical model for the analyzed segment
of speech. For each segment, once we have chosenγ, we can solve
the minimization problem in (3). At this point we obtain a high or-
der solution vector (the prediction polynomial) and a residual vector
that clearly exhibits sparsity. We will then look at efficient ways to
encode these.

3.1 Selection of the regularization parameter

The regularization parameterγ plays a fundamental role in finding
an appropriate statistical model for the segment of speech that is
being analyzed. Previous works based on the regularized minimiza-
tion problem in (2), withp = 2 andk = 2, suggest that the choice
should be done based on an algorithm that locates the “corner” of
theL-curve [5], defined as the point of maximum curvature of the
L shaped curve obtained by plotting (‖x−Xaγ‖2,‖aγ‖2) for sev-
eral values ofγ. This value ofγ then offers the best trade-off in the
minimization problem (3).

In our case we modify this principle by replacing the 2-norm
with the 1-norm: the newL-curve (‖x−Xaγ‖1,‖aγ‖1) will still be
a monotonically decreasing curve and the solutionaγ is a piecewise
linear function ofγ. We can use the same algorithm used in [5] in
order to find the point of maximum curvature, that will correspond
to the valueγ0. An example of theL-curve so obtained is shown
in Figure 1. Considering the 1-norm as an approximation of the
0-norm, this process may be seen as a trade-off between the spar-
sity of the residual and the sparsity of the predictor. In particular
for γ ≥ ‖XT

x‖∞ (where‖ · ‖∞ = ‖ · ‖∗1 denotes the dual norm) the
entries ofaγ will all be zeros while forγ = 0 the predictor sparsity
is not controlled and so the number of zeros in the residual will be
proportional to the order of the predictorK.

3.2 Factorization of the high order predictor

For each segment of speech, the high order predictorA(z), obtained
by solving (3) usingγ0 as regularization parameter, has mostly ze-
ros as entries due to the sparsity that we have imposed on it. How-
ever, the quantization of this predictor may not be trivial due to
spurious near-zero components. In this section we will present a
robust method to remove these spurious components by creating a
new polynomialAos(z) that will then be efficiently factorized into a
short-term predictorAst p(z)and a long-term predictorP(z).
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Figure 1: An example of the L-curve (‖x−Xaγ‖1,‖aγ‖1) obtained for
a segment of 160 samples of speech (20 ms at 8 kHz); the order isK =
110. The lower and upper bounds ofγ and their respective solution norm
and residual norm are also shown.γ0 represents the optimal value of the
regularization parameter for the current segment found with the algorithm
shown in [5].

The removal of the spurious near-zero components inA(z) can
be done by applying a model order selection criterion that identifies
the useful coefficients in the predictor. Most model order selection
criteria for autoregressive (AR) spectral estimation are based on the
assumption that the minimization term is the prediction error power
of the AR filter. A criterion first introduced by Jenkins and Watts
[7] can be generalized to the minimization of the sum of absolute
values. The model order selection criterion will then be based on
the function:

αk =
1

N−2k

N−1

∑
n=k

∣

∣

∣

∣

∣

x(n)+
k

∑
i=1

ak(n)x(n− i)

∣

∣

∣

∣

∣

, (5)

where the prediction vectora is obtained by solving the minimiza-
tion problem in (3) for different ordersk, using the regularization
parameterγ0 found in the previous step. It has been shown [6] that
when solving (3) for a segment of voiced speech, the high order
polynomialA(z) will be very similar to the convolution of a short-
term linear predictor and a long-term linear predictor. According to
this, αk will have a shape that helps us to identify the locations in
A(z) of both the short-term predictor and the locations of the coef-
ficients obtained from the convolution between the short-term and
long-term predictors. In particular, in traditional AR model selec-
tion, αk will be rapidly decreasing toward a global minimumkGMIN
and then monotonically increasing; the order of the AR model
is then chosen askGMIN. This would still be case for segments
of signal where long-term redundancies are not present (unvoiced
speech). However, in the case when these redundancies are present
(voiced speech), the functionαk assumes a very interesting behav-
ior: it will still initially decrease toward a global minimumkGMIN
and start increasing again; but then, when the polynomial of or-
derk in (5) will start including the positions where the convolution
between the short-term and long-term predictors includes impor-
tant coefficients,αk will then decrease, increase and decrease again
exhibiting also two local minima (kLMIN1, kLMIN2) and two local
maxima (kLMAX1, kLMAX2). By extending the polynomial in (5),
past the positions where the important long-term contribution are,
αk will then increase monotonically toward the global maximum.
The first local maximumkLMAX1 and the second local minimum
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Figure 2: An example of the cost functionαk for a segment of voiced
speech. The values used for the order selection kGMIN = 6, kLMAX1 = 23
and kLMIN2 = 32are shown.
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Figure 3:An example of the high order predictor coming out of the mini-
mization process A(z) and its “clean” version Aos(z)

kLMIN2 then define the location of the convolution of the short-term
and the long-term predictor as they are acknowledged by the model
order selection curveαk by making it descend (or, in other words,
being useful in the minimization process). Thus, the coefficients
with indexes[kLMAX1 + 1, . . . ,kLMIN2] and the firstkGMIN coeffi-
cients (corresponding to the location of the short-term predictor)
are the only useful non-zero elements inA(z) that we need. An ex-
ample of the functionαk for voiced speech is shown in Figure 2 and
an example of the two high order polynomials before and after re-
moving the spurious components through the model order selection
information (A(z) andAos(z)) are shown in Figure 3. The prediction
vectorAos(z) may now be relatively easy to quantize, having usually
few non-zero coefficients. However we can make a further simplifi-
cation that makes our solution more meaningful by proceeding with
the deconvolution of the high-order polynomial. Knowing that the
short-term predictorAst p(z) is located in the firstkGMIN positions
of Aos(z):

Ast p(z) = 1−
Nst p

∑
k=1

aos,kz−k
, (6)

whereNst p = kGMIN, we can separateAos(z) into its two contribu-
tions, short-termAst p(z) and long-termALTP(z):

Aos(z) = ALTP(z)Ast p(z)+R(z) ≈ ALTP(z)Ast p(z), (7)

where we can reasonably assume that the deconvolution residual
R(z) is negligible. The resulting polynomialALTP(z) can then be
further reduced into the classical form for a long-term predictor:

P(z) = 1−
Np−1

∑
k=0

gkz−(Tp+k)
, (8)
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Figure 4:An example of the sparse residual vector for a segment of voiced
(above) and unvoiced speech (below).

whereTp = kLMAX1 + 1. The number of tapsNp, i.e., the order of
P(z), is chosen by looking at the difference between the magnitude
of the frequency response between the true long-term contribution
polynomialALTP(z) and its approximationP(z).

3.3 Encoding of the residual

In traditional LPC coding schemes, the 2-norm shapes the resid-
ual such that it exhibits Gaussian-like characteristics. This is not
the case in our scheme, where the residual exhibits sparse charac-
teristics (Figure 4). In early GSM standards, notably in the Multi-
Pulse and Regular-Pulse Excitation methods (MPE and RPE) [8],
the residual is encoded using only few non-zero pulses. We will
then go back to these previous methods as encoding procedures, as
they are reasonable approaches to encoding the residual.

In the MPE scheme, an efficient solution is found by determin-
ing in an analysis-by-synthesis scheme the locations and amplitudes
of the pulses composing the synthetic excitation, one at the time.
Finding the location in our case will be much simplified by the spar-
sity of the residual (Figure 4). The RPE scheme is based on a sim-
ilar concept, except that the location of the non-zero samples in the
residual is now constrained. In particular, the excitation sequence
will be an upsampled version of an optimal vector found using an
analysis-by-synthesis criterion. This encoding procedure also al-
lows for a shift of the upsampled sequence [8]. In our work, we
will consider this second formulation which will result in a more
efficient bit allocation. In the analysis-by-synthesis procedure we
will use the polynomial obtained as the multiplication ofAst p(z)
andP(z).

4. VALIDATION

To validate our method, we will compare it with the GSM 6.10
RPE-LTP Coder [8] and the low rate CELP coder presented in [10].
The comparison with the former method will show that the differ-
ent ways of estimating the parameters and the residual will lead to
a significant decrease in the bit rate with similar perceptual qual-
ity. The comparison with the latter method will show the higher
perceptual quality obtained with similar bit rate. We have ana-
lyzed about one hour of clean speech coming from several different
speakers with different characteristics (gender, age, pitch, regional
accent) taken from the TIMIT database, re-sampled at 8 kHz. In
order to obtain comparable results, the frame length isN = 160
(20 ms). The order of the optimization problem in (3) isK = 110
and the order of the short-term and long-term predictors are chosen
according to the method presented in 3.2. For voiced speech we
have noted that the order of the short-term predictor is usually be-
tweenNst p = 6 andNst p = 8 and the corresponding long-term pre-
dictor order is betweenNp = 1 (usual single lag implementation)
andNp = 3, while for unvoiced speech the order is usually between
Nst p = 8 andNst p = 11, without long-term information. The choice



Coder Bit Rate MOS
Sparse LP 4.6 Kb/s 3.49±0.03
RPE-LTP 12.4 Kb/s 3.59±0.06
CELP 4.7 Kb/s 3.21±0.01

Table 1:Comparison in terms of bit rate and Mean Opinion Score (MOS)
between our coder based on Sparse LP, the RPE-LTP and the CELPscheme
according to [10]. A 95% confidence intervals is given for each value.

of K = 110 means that we can cover accurately pitch delays in the
interval [Nst p+ 1,K −Nst p− 1], including the usual range for the
pitch frequency[70Hz,500Hz].

In our method, as well as for the other two coding schemes,
the coefficients of the short-term predictor are encoded using their
Line Spectral Frequencies (LSFs) representation. The number of
bits needed for each LSFs vector it is fixed to 20 bits for a 10 co-
efficients predictive vector in the RPE and ACELP coders. In our
scheme, it will depend on the predictor length from 12 (Nst p = 6)
to 22 (Nst p = 11) bits per frame. In all three schemes, the method
presented in [9] is used; the number of bits chosen is consistent
with the transparent coding properties (spectral distortion between
quantized and unquantized spectrum less than 1 dB).

Each long-term prediction coefficient is encoded directly with
6, 5, and 4 bits (depending on the position) and the pitch period is
encoded with 7 bits. The number of pulses to be used in the regular-
pulse encoding of the residual is based on the intrinsic classifica-
tion between voiced an unvoiced speech performed in the factor-
ization procedure of the high-order polynomial. For voiced speech,
the residual will have only very few significant non-zero values,
while for unvoiced speech the residual will have a less clear sparse
structure (Figure 4). Therefore we will represent the excitation
with 20 samples (pulse spacingQ = 8) in the case of unvoiced
speech and only 10 samples (pulse spacingQ = 16) in the case of
voiced speech. A 8-level uniform quantizer is used in both cases.
The quantizer normalization factor (the peak magnitude) is encoded
with 6 bits per frame; the initial shift is encoded with 3 or 4 bits de-
pending on the number of pulses used in the residual.

The maximum bit rate for voiced speech segments is 87
bits/frame (4300 bits/s) obtained whenNst p = 8, Np = 3 and we
use 10 pulses to code the excitation. The maximum bit rate for
unvoiced speech segments is 110 bits/frame (4800 bits/s) obtained
whenNst p = 11 and we use 20 pulses to code the excitation. The
choice of the maximum possible number of coefficients is given by
the analysis phase. For voiced speech the largest observed value
of Nst p was 8 and to model the long-term predictor no more than 3
taps have been needed. Similarly, for unvoiced speech the largest
observed value ofNst p was 11. The average bit rate is around 4600
bits/s. It should be noted that our scheme requires for each frame
1 bit to indicate the voiced/unvoiced decision, 2 bits to indicate the
order of the short-term predictor and 2 bits to indicate the order of
the long-term predictor.

A perceptual evaluation using PESQ (ITU-T P.862) has been
done and the coding scheme has been compared by means of the
Mean Opinion Score (MOS) with the other two schemes. The re-
sults are shown in Table 1. The evaluation clearly shows that the
large reduction in the bit rate, compared to the RPE, is paid by just
a slight decrease in accuracy, demonstrating the robustness of our
method. The CELP scheme, that works with a similar bit rate, has
a significantly worse perceptual quality.

5. DISCUSSION

In this section we will discuss some of the drawbacks and advan-
tages of the LPC method presented in the paper.
Stability
Stability is important in common linear predictive coding for var-
ious reasons, the most important one being its employment in the
analysis-by-synthesis schemes, to choose the best approximate ex-

citation, and in the synthesis of the reconstructed speech signal. Our
scheme presents a low rate (around 2%) of unstable combined fil-
ters Ast p(z)P(z) and an important aspect is that the instability in
this polynomial is given, except very few exceptions, only by the
long-term predictorP(z). This is consistent with traditional coding
procedures in which the pitch gain is allowed to be greater than 1
(one tap implementation). It should be noted thatA(z), Aos(z) and
the combined polynomialAst p(z)P(z) exhibit the same instability
rate, a further proof of the good criterion employed to factorize the
polynomial. Although stability has been considered a fundamental
property to be kept in speech coding frameworks, we have noted
in our scheme that instability does not affect the performances of
our coder (i.e., the output of the system does not “explode”). We
have found as a main reason for this is that the roots outside the unit
circle are usually only given by the long-term predictor and they
are still very close to the unit circle. A proof is that performing a
bandwidth expansion, using a fixed value found in the analysis pro-
cess as low as 0.9965 (about 20 Hz of expansion), would force the
number of non-minimum phase combination filtersAst p(z)P(z) to
zero. The unstable filters are also isolated events that do not create
problems in the reconstruction phase. In practice, using a minimum
phaseAst p(z)P(z) results in slightly higher time-domain distortion
than the original composite filter.
Uniqueness
The minimization problem in (3) allows for the solution not to be
unique. In these rare cases of multiple solutions, due to the convex-
ity of the cost function, we can easily state that the all the possible
multiple solutions will still be optimal [2].
Computational costs
Regarding the computational costs, finding the solution of the
overdetermined system of equations in (3) using a modern inte-
rior point algorithm [2] can be shown to be comparable to solving
around 20-30 least square problems. However, our advantage is that
we have found a one step way to calculate both the short-term and
the long-term predictors while the encoding of the residual is fa-
cilitated by its sparse characteristics. The process of selecting the
regularization parameterγ0 can also be highly simplified by choos-
ing it in a fixed or adaptive way based on the properties of the signal
as done in other regularized prediction methods [6, 11]. The factor-
ization process can also be done by choosing a fixed set of possible
values ofNst p andNp and selecting the ones that creates the best
fitting of A(z), skipping the model order selection procedure [6].
Sensitivity of the short-term predictor coefficients
In the experimental analysis, the coefficients of the short-term
prediction polynomialAst p(z) obtained with our LP method have
shown to have lower sensitivity than the one obtained with usual
LPC procedures. This allows one to also have reflection coeffi-
cients, Log-Area-Ratio coefficients or Line Spectral Frequencies,
with a lower sensitivity as well, therefore allowing more efficient
quantization. In particular, we have observed a lower log spectral
distortion (LSD) between the estimated short-term AR model ob-
tained with our methodS1(ω,a) and its corresponding quantized
version Ŝ1(ω,a), compared to the one obtained with the 2-norm
autocorrelation methodS2(ω,a) (applying a 60 Hz bandwidth ex-
pansion) and its quantized versionŜ2(ω,a). Another comparison,
between a reference spectrumSre f (ω) and the quantized versions of
the two AR models has also demonstrated that our method is gen-
erally more efficient in quantization purposes by achieving a lower
distortion at lower bit rates. The reference used was found through
a cubic spline interpolation between the harmonic peaks of the loga-
rithmic periodogram and used as an approximation of the true vocal
tract transfer function [11]. An example of the LSD values obtained
for different rates is shown in Figure 5.
Pitch-independence and shift-independence
Two properties of the method presented in this paper that have
stunned us, and will be subject to further investigations, are the
pitch-independence of the short-term predictorAst p(z) and the shift-
independence of the solution predictorA(z). Our analysis has
shown that shifting the frame boundaries by few samples does not
change significantly the statistics of the predictor as much as with



the traditional linear predictive coding. The pitch-independence
has been observed by re-synthesizing segments of speech chang-
ing only the pitch value. Analyzing again the new synthetic sig-
nal and comparing the new short-term envelopes with the original
ones, the new short-term envelopes have not exhibited any signifi-
cant changes when our method is employed, while dramatic differ-
ences have been observed when traditional 2-norm LP analysis is
used. Both properties are most likely due to the robustness of the
estimation based on the 1-norm to outliers. The shift-independence
may be mainly due to the reduced dependence of the solution to all
of the values taken into consideration in the minimization process
(just like when calculating the median value of an even number of
observations). The pitch-independence may be due to the reduced
emphasis put on the envelope peaks by the 1-norm LP estimation
than the traditional 2-norm LP estimation in the minimization pro-
cess to reduce the outliers of the pitch excitation. The common
LP analysis tries to cancel the pitch harmonics by putting some of
the poles very closed to the unit circle. The 1-norm approach ac-
knowledges the existence of the pitch harmonics, although it does
not try to cancel them because its purpose is not to fit the error into a
Gaussian-like probability density function and consequently it will
let through the pitch excitation outliers. This results in smoother
short-term filters that are independent from the underlying pitch ex-
citation in voiced speech. This makes the pitch detection much eas-
ier in the case of a conventional analysis based on the short-term
residual. In our case, we go even beyond this sequential approach
having jointly estimated short-term and long-term predictors. The
pitch-tracking properties have been shown to outperform the tradi-
tional closed-loop pitch estimation done on the short-term predic-
tion residual. We compared the results of both with a robust refer-
ence based on subspace pitch estimation [12]; an example is shown
in Figure 6.

6. CONCLUSIONS

In this paper we have introduced a new formulation in the context
of speech coding where the concept of sparsity is used in the lin-
ear predictive scheme.The sparse residual obtained allows a more
compact representation, while the sparse high order predictor en-
genders joint estimation of short-term and long-term predictors that
achieve better spectral matching properties than conventional meth-
ods. The short-term predictors obtained are not corrupted by the fine
structure belonging to the pitch excitation and their smoother spec-
tral envelopes are robust to quantization. These envelopes are also
represented using lower order AR models compared to traditional
LP based coders, thus requiring fewer bits. The long-term predic-
tors and, in particular, the pitch lag estimation are also more accu-
rate. These and other interesting properties, like pitch-independence
of the short-term spectral envelopes and shift-independence of the
combined envelopes, lead to attractive performance in speech cod-
ing.
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Figure 5:Values of average log spectral distortion (LSD) for voiced speech
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2-norm minimization (Nst p = 10)) and their quantized version (LSD1−1q vs.
LSD1−2q). The total LSD is also shown comparing the quantized AR models
with a ground truth reference spectrum (LSDre f−1q vs. LSDre f−2q). In our
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