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ABSTRACT predictive scheme on the predictor and on the residual in order to de-

This paper describes a novel speech coding concept created by fine, in the latter stage, a more efficient quantization. The strength

troducing sparsity constraints in a linear prediction scheme both ofif 0ur method is seen when these characteristics are used to realize
the residual and on the prediction vector. The residual is efficiently [0W bit rate coder that keeps the perceptual quality at high levels.
encoded using well known multi-pulse excitation procedures due to "€ Paper is organized as follow. We first outline the mathe-
its sparsity. A robust statistical method for the joint estimation of theTatical formulations of the proposed algorithms. The core of the
short-term and long-term predictors is also provided by exploiting?@P€r is dedicated to introducing the speech coding procedure and
the sparse characteristics of the predictor. Thus, the main purpoS80Wing the performance results obtained with this technique. Then
of this work is showing that better statistical modeling in the contextVe Will discuss and illustrate advantages and disadvantages of this
of speech analysis creates an output that offers better coding proféthed before concluding on our work.

erties. The proposed estimation method leads to a convex optimiza-

tion problem, which can be solved efficiently using interior-point 2. SPARSE LINEAR PREDICTION
methods. Its simplicity makes it an attractive alternative to COM-The estimation problem considered in this paper are based on the
mon speech coders based on minimum variance linear prediction following autoregressive (AR) model, where speech signal sample

x(n) is written as a linear combination of past samples:
1. INTRODUCTION

Linear prediction (LP) is an integral part of many modern speech
coding systems and is commonly used to estimate the autoregres- X(n) = 2 ax(n—k) +e(n). @
sive (AR) filter parameters describing the spectral envelope of a k=1

segment of speech. Typically, the prediction coefficients are foun - - . o
such that the 2-norm of the difference between the observed sign here{ay} are the prediction coefficients aeh) is the excitation

and the predicted signal is minimized [1]. However, the minimiza-° the corresponding AR filter. We consider the optimization prob-

tion criterion has been shown to be not optimal in many cases. Féfm associated with finding the prediction coefficient veetarR"
example, in voiced speech, when the excitation is not Gaussian, tgm a set of observed real sampks) for n= 1,...,N so that
estimation of the short-term spectrum is contaminated by the spe&€ Prediction error is minimized [2]. The prediction error vector
tral fine structure due to the presence of a pitch excitation. In thi§ = X — X&is commonly referred to as the residual which is an es-
case, the usual approach is to find coefficients for the short-term arjiinate Of the excitatiow, obtained from some estimageresulting
long-term signal correlation in two different steps leading to inher-T0m the following minimization problem:

ently suboptimal solutions. Furthermore, the 2-norm minimization ] ‘

shapes the residual into variables that exhibit Gaussian-like charac- min|[x — Xa|| B+ vllall, 2
teristics; however, in order to encode the residual efficiently, usually

only few non-zero pulses are used. We can then reasonably assuijgere

that the ideal predictor is not the one that minimizes the 2-norm but

the one that leaves the fewest non-zero pulses in the residual, i.e. x(Ny) X(N;—1) -+ x(Ny—K)

generates the sparsest residual.

In this paper, we present a method for estimating jointly the : X = : :
short-term and long-term predictors that results in a sparse residual. X(N2) X(N2—1) -+ x(N2—K)
With this, we transcend the well known problems related to tradi-
tional LP based coding discussed above. The novelty introduced is

1
: eting i ; d| -||p is the p-norm defined agx||p = (FN_; [x(n)|P)*» for
then to exploit the sparse characteristics imposed by the new Ilne%ln2 1. The start and end point andN, can Tae chosen in var-
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(2) means that we would like to minimize the number of non-zerc
samples in the error vector. Unfortunately this is a combinatorie 9
problem which generally cannot be solved in polynomial time. In- < Y0
stead of the cardinality measure, we then use the more tractable
norm|| - |1 widely used as a linear programming relaxation of this
problem [4]. Wherp =1 andk = 1, our optimization problem then
becomes:
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This optimization problem can be posed as a linear programmin
problem and can be solved using an interior-point algorithm [2]
The introduction of the regularization parametem (2) is inti-
mately related to the priori knowledge that we have on the co-
efficients vector{ax} or, in other words, to how sparsgy} is,
considering the 1-norm as an approximation of the 0-norm. Fui
thermore, from a Bayesian point of view, this may be interpreted a
the maximum a posteriofMAP) approach for findinday} under
the assumption that the coefficients vector and the error vector a T‘m T ™ ¢
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=arg rr;a){exp( [lx = Xallz) exp(—-v[all2)} Figure 1: An example of the L-curve|%x — Xay||1.]|ay||1) obtained for
a segment of 160 samples of speech (20 ms at 8 kHz); the ordle=is
3. BASIC CODING STRUCTURE 110 The lower and upper bounds pfand their respective solution norm

h fth h coder is b d h L bl and residual norm are also showrny represents the optimal value of the
The core o the Speech coder IS based on the Optllmlzatlon pro eF@gularization parameter for the current segment founchwiite algorithm
(3) seen in the previous section. In order to obtain appropriate SQown in [5].

lutions, we have to choose a proper regularization paranyeiter
order to obtain the best statistical model for the analyzed segment
of speech. For each segment, once we have chgsee can solve
the minimization problem in (3). At this point we obtain a high or-
der solution vector (the prediction polynomial) and a residual vecto
that clearly exhibits sparsity. We will then look at efficient ways to
encode these.

The removal of the spurious near-zero componenty # can
e done by applying a model order selection criterion that identifies
he useful coefficients in the predictor. Most model order selection
criteria for autoregressive (AR) spectral estimation are based on the
assumption that the minimization term is the prediction error power
. o of the AR filter. A criterion first introduced by Jenkins and Watts
3.1 Selection of the regularization parameter [7] can be generalized to the minimization of the sum of absolute
The regularization parametgmlays a fundamental role in finding values. The model order selection criterion will then be based on
an appropriate statistical model for the segment of speech that the function:
being analyzed. Previous works based on the regularized minimiza-
tion problem in (2), withp = 2 andk = 2, suggest that the choice 1 N1
should be done based on an algorithm that locates the “corner” of ax = N_ 2k Zk
the L-curve [5], defined as the point of maximum curvature of the n=
L shaped curve obtained by plottingx(— Xay||2,||ay||2) for sev-
eral values of. This value ofy then offers the best trade-off in the
minimization problem (3).
In our case we modify this principle by replacing the 2-norm

with the 1-norm: the new-curve (|x — Xay||1,|ay||1) will still be
a monotonically decreasing curve and the solutipiis a piecewise
linear function ofy. We can use the same algorithm used in [5] in
order to find the point of maximum curvature, that will correspond
to the valueyy. An example of theL-curve so obtained is shown
in Figure 1. Considering the 1-norm as an approximation of th
0-norm, this process may be seen as a trade-off between the sp
sity of the residual and the sparsity of the predictor. In particulal

T _ *

for y > || X x|l (where| - ||l = || - |3 denotes the dual norm) the ;0" chosen akgyyy. This would still be case for segments

entries ofay will all be zeros while fory = 0 the predictor sparsity : b ; :

is not controlled and so the number of zeros in the residual will beOf signal where Iong term redundancies are not present (unvoiced

proportional to the order of the predictit Speech). However, in the case when these redundancies aretpresen
(voiced speech), the functiam, assumes a very interesting behav-

ior: it will still initially decrease toward a global minimutkgmin

and start increasing again; but then, when the polynomial of or-

For each segment of speech, the high order predi{mr; obtained  derk in (5) will start including the positions where the convolution

by solving (3) usingy as regularization parameter, has mostly ze-between the short-term and long-term predictors includes impor-

ros as entries due to the sparsity that we have imposed on it. Howant coefficientsgy will then decrease, increase and decrease again

ever, the quantization of this predictor may not be trivial due toexhibiting also two local minimak{yin1, kiminz) and two local

spurious near-zero components. In this section we will present maxima k max1, Kimaxz). By extending the polynomial in (5),

robust method to remove these spurious components by creatingpast the positions where the important long-term contribution are,

new polynomialAqs(2) that will then be efficiently factorized into a  ay will then increase monotonically toward the global maximum.

short-term predictoAstp(z)and a long-term predictd?(z). The first local maximunk; pmaxi and the second local minimum

K
x(n) +';ak(n)x(n_ Dl ®)

where the prediction vecter is obtained by solving the minimiza-
tion problem in (3) for different orderk, using the regularization
parametepp found in the previous step. It has been shown [6] that
when solving (3) for a segment of voiced speech, the high order
polynomial A(z) will be very similar to the convolution of a short-
term linear predictor and a long-term linear predictor. According to
this, ay will have a shape that helps us to identify the locations in
A(z) of both the short-term predictor and the locations of the coef-
icients obtained from the convolution between the short-term and
ng-term predictors. In particular, in traditional AR model selec-
1on, ay will be rapidly decreasing toward a global minimukggwn
and then monotonically increasing; the order of the AR model

3.2 Factorization of the high order predictor
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Figure 2: An example of the cost functiam, for a segment of voiced Figure 4:An example of the sparse residual vector for a segment oésoic
speech. The values used for the order selectigyik = 6, kimax1 = 23 (above) and unvoiced speech (below).
and K vin2 = 32 are shown.

o 1 whereTp = Kk max1 +1. The number of tapBlp, i.e., the order of
05 1 P(2), is chosen by looking at the difference between the magnitude
g o M of the frequency response between the true long-term contribution
-05 1 polynomialA_1p(z) and its approximatioR(z).
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0 20 3 40 50 60 70 80 90 100 3.3 Encoding of the residual

In traditional LPC coding schemes, the 2-norm shapes the resid-
ual such that it exhibits Gaussian-like characteristics. This is not

- 08 il the case in our scheme, where the residual exhibits sparse charac-
20 ’W\' teristics (Figure 4). In early GSM standards, notably in the Multi-
-05 Pulse and Regular-Pulse Excitation methods (MPE and RPE) [8],
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ A the residual is encoded using only few non-zero pulses. We will
20 30 40 6O 60 70 80 90 100 then go back to these previous methods as encoding procedures, as

they are reasonable approaches to encoding the residual.
In the MPE scheme, an efficient solution is found by determin-

Figure 3:An example of the high order predictor coming out of the mini- ing in an analysis-by-synthesis scheme the locations and amplitudes
mization process (&) and its “clean” version As(2) of the pulses composing the synthetic excitation, one at the time.

Finding the location in our case will be much simplified by the spar-

sity of the residual (Figure 4). The RPE scheme is based on a sim-
k.minz then define the location of the convolution of the short-termilar concept, except that the location of the non-zero samples in the
and the long-term predictor as they are acknowledged by the modesidual is now constrained. In particular, the excitation sequence
order selection curvey by making it descend (or, in other words, will be an upsampled version of an optimal vector found using an
being useful in the minimization process). Thus, the coefficientanalysis-by-synthesis criterion. This encoding procedure also al-
with indexes[k max1 + 1., kuminz] and the firstkgmin coeffi-  lows for a shift of the upsampled sequence [8]. In our work, we
cients (corresponding to the location of the short-term predictorlill consider this second formulation which will result in a more
are the only useful non-zero elementshifz) that we need. An ex- efficient bit allocation. In the analysis-by-synthesis procedure we
ample of the functiom for voiced speech is shown in Figure 2 and will use the polynomial obtained as the multiplication A (2)
an example of the two high order polynomials before and after reandP(z).
moving the spurious components through the model order selection
information @(z) andAgs(2)) are shown in Figure 3. The prediction 4. VALIDATION
vectorAgs(z) may now be relatively easy to quantize, having usually
few non-zero coefficients. However we can make a further simplifi-To validate our method, we will compare it with the GSM 6.10
cation that makes our solution more meaningful by proceeding witiRPE-LTP Coder [8] and the low rate CELP coder presented in [10].
the deconvolution of the high-order polynomial. Knowing that the The comparison with the former method will show that the differ-
short-term predictoAstp(2) is located in the firskgyn positions — ent ways of estimating the parameters and the residual will lead to

of Aps(2): a significant decrease in the bit rate with similar perceptual qual-
Nstp ity. The comparison with the latter method will show the higher

Astp(z) =1— Z aoskZ K, (6)  perceptual quality obtained with similar bit rate. We have ana-

k=1 lyzed about one hour of clean speech coming from several ditferen

speakers with different characteristics (gender, age, pitch, rdgiona
accent) taken from the TIMIT database, re-sampled at 8 kHz. In
order to obtain comparable results, the frame lengtN is 160
Aos(2) = ALTP(2)Astp(2) + R(2) = ALTP(2)Astp(2), (7) (20 ms). The order of the optimization problem in (3Kis= 110
. . and the order of the short-term and long-term predictors are chosen
where we can reasonably assume that the deconvolution feS'dL@écording to the method presented in 3.2. For voiced speech we
R(2) is negligible. The resulting polynomi#_rp(z) can then be. have noted that the order of the short-term predictor is usually be-
further reduced into the classical form for a long-term predictor: tweenNstp = 6 andNstp = 8 and the corresponding long-term pre-
Np—1 dictor order is betweefp = 1 (usual single lag implementation)
P(2)=1— gz (oK) ®) andNp = 3, while for unvoiced speech the order is usually between
k; ’ Nstp = 8 andNstp = 11, without long-term information. The choice

whereNstp = kgmin, We can separatBos(2) into its two contribu-
tions, short-termgtp(z) and long-ternA 1p(2):



[_Coder | BitRate | MOS | citation, and in the synthesis of the reconstructed speech signal. Our

Sparse LP| 4.6 Kb/s | 3.49+-0.03 scheme presents a low rate (around 2%) of unstable combined fil-
RPE-LTP | 12.4Kb/s | 3.59+0.06 ters Agtp(2)P(z) and an important aspect is that the instability in
CELP 4.7 Kb/s | 3.21+0.01 this polynomial is given, except very few exceptions, only by the

long-term predictoP(z). This is consistent with traditional coding
procedures in which the pitch gain is allowed to be greater than 1
Table 1:Comparison in terms of bit rate and Mean Opinion Score (MOS)(one tap implementation). It should be noted thét), As(z) and
between our coder based on Sparse LP, the RPE-LTP and the €Eefe  the combined polynomiaAstp(z)P(z) exhibit the same instability
according to [10]. A 95% confidence intervals is given forteaalue. rate, a further proof of the good criterion employed to factorize the
polynomial. Although stability has been considered a fundamental
property to be kept in speech coding frameworks, we have noted

of K = 110 means that we can cover accurately pitch delays in th#! our scheme that instability does not affect the performances of
interval [Nstp+ 1, K — Netp— 1], including the usual range for the our coder (i.e., the output of the system does not “explode”). We
pitch frequency70Hz 500HZ. have found as a main reason for this is that the roots outside the unit

In our method, as well as for the other two coding schemes?lrcle are usually only given by the Iong-term predictor anq they
the coefficients of the short-term predictor are encoded using thef'® Still very close to the unit circle. A proof is that performing a
Line Spectral Frequencies (LSFs) representation. The number ndwidth expansion, using a fixed value found_ in the analysis pro-
bits needed for each LSFs vector it is fixed to 20 bits for a 10 co€SS as low as 0.9965 (about 20 Hz of expansion), would force the
efficients predictive vector in the RPE and ACELP coders. In ounumber of non-minimum phase combination filtép(2)P(2) to
scheme, it will depend on the predictor length from M2 = 6) zero. The_unstable filters are also isolated events that do not create
to 22 (Nstp = 11) bits per frame. In all three schemes, the methodProblems in the reconstruction phase. In practice, using a minimum
presented in [9] is used; the number of bits chosen is consisteN@S@Astp(2)P(2) results in slightly higher time-domain distortion
with the transparent coding properties (spectral distortion betweefan the original composite filter.
quantized and unquantized spectrum less than 1 dB). Uniqueness _ _

Each long-term prediction coefficient is encoded directly with The minimization problem in (3) allows for the solution not to be
6, 5, and 4 bits (depending on the position) and the pitch period ignidque. In these rare cases of multiple solutions, due to the convex-
encoded with 7 bits. The number of pulses to be used in the regulat Of the cost function, we can easily state that the all the possible
pulse encoding of the residual is based on the intrinsic classificgultiple solutions will still be optimal [2].
tion between voiced an unvoiced speech performed in the factofcOMputational costs o .
ization procedure of the high-order polynomial. For voiced speechRegarding the computational costs, finding the solution of the
the residual will have only very few significant non-zero values,overdetermined system of equations in (3) using a modern inte-
while for unvoiced speech the residual will have a less clear spard®r point algorithm [2] can be shown to be comparable to solving
structure (Figure 4). Therefore we will represent the excitation2round 20-30 least square problems. However, our advantage is tha
with 20 samples (pulse spacir@ = 8) in the case of unvoiced W€ have found a one step way to calculate both the short-term and
speech and only 10 samples (pulse spa€ng 16) in the case of the long-term predictors while the encoding of the residual is fa-
voiced speech. A 8-level uniform quantizer is used in both case&llitated by its sparse characteristics. The process of selecting the
The quantizer normalization factor (the peak magnitude) is encode@gularization parametgg can also be highly simplified by choos-
with 6 bits per frame; the initial shift is encoded with 3 or 4 bits de-Nd itin a fixed or adaptive way based on the properties of the signal
pending on the number of pulses used in the residual. as done in other regularized prediction methods [6, 11]. The factor-

The maximum bit rate for voiced speech segments is gzation process can also be done by choosing a fixed set of possible
bits/frame (4300 bits/s) obtained whép, — 8, Np = 3 and we values ofNstp andNp and selecting the ones that creates the best
use 10 pulses to code the excitation. The maximum bit rate fofitting of A(z), skipping the model order selection procedure [6]
unvoiced speech segments is 110 bits/frame (4800 bits/s) obtaingtfNSitivity of the short-term predictor coefficients
whenNg;p = 11 and we use 20 pulses to code the excitation. Tha! the experimental analysis, the coefficients of the short-term
choice of the maximum possible number of coefficients is given byPrediction polynomialAsp(z) obtained with our LP method have
the analysis phase. For voiced speech the largest observed vafgfgoWn to have lower sensitivity than the one obtained with usual
of Netp was 8 and to model the long-term predictor no more than 3-- C procedures. _This allof\f/\_/s_ one to also have relflectlon coeffi-
taps have been needed. Similarly, for unvoiced speech the largedEnts: Log-Area-Ratio coefficients or Line Spectral Frequencies,
observed value dfisip was 11. The average bit rate is around 4600WIth a lower sensitivity as well, therefore allowing more efficient
bits/s. It should be noted that our scheme requires for each franfi@ntization. In particular, we have observed a lower log spectral
1 bit to indicate the voiced/unvoiced decision, 2 bits to indicate thefiStortion (LSD) between the estimated short-term AR model ob-

order of the short-term predictor and 2 bits to indicate the order of2ined with our method (w, a) and its corresponding quantized
the long-term predictor. version Sl(ag, a), compared to the one obtained with thg 2-norm
A perceptual evaluation using PESQ (ITU-T P.862) has beeutocorrelation metho8(w,a) (applying a 60 Hz bandwidth ex-
done and the coding scheme has been compared by means of gnsion) and its quantized versigg(w,a). Another comparison,
Mean Opinion Score (MOS) with the other two schemes. The rebetween a reference spectr&g(w) and the quantized versions of
sults are shown in Table 1. The evaluation clearly shows that théhe two AR models has also demonstrated that our method is gen-
large reduction in the bit rate, compared to the RPE, is paid by jusgrally more efficient in quantization purposes by achieving a lower
a slight decrease in accuracy, demonstrating the robustness of adistortion at lower bit rates. The reference used was found through
method. The CELP scheme, that works with a similar bit rate, ha@ cubic spline interpolation between the harmonic peaks of the loga-

a significantly worse perceptual quality. rithmic periodogram and used as an approximation of the true vocal
tract transfer function [11]. An example of the LSD values obtained
5. DISCUSSION for different rates is shown in Figure 5.

Pitch-independence and shift-independence
In this section we will discuss some of the drawbacks and advarifwo properties of the method presented in this paper that have
tages of the LPC method presented in the paper. stunned us, and will be subject to further investigations, are the
Stability pitch-independence of the short-term prediétgp(z) and the shift-
Stability is important in common linear predictive coding for var- independence of the solution predicta(z). Our analysis has
ious reasons, the most important one being its employment in thehown that shifting the frame boundaries by few samples does not
analysis-by-synthesis schemes, to choose the best approximate ekange significantly the statistics of the predictor as much as with



the traditional linear predictive coding. The pitch-independence
has been observed by re-synthesizing segments of speech chanc | 1 S0 —--1sb —Iso - _Lsb
ing only the pitch value. Analyzing again the new synthetic sig- 35~ 2 = et ret2)
nal and comparing the new short-term envelopes with the original
ones, the new short-term envelopes have not exhibited any signifi-
cant changes when our method is employed, while dramatic differ-
ences have been observed when traditional 2-norm LP analysis is
used. Both properties are most likely due to the robustness of the
estimation based on the 1-norm to outliers. The shift-independence
may be mainly due to the reduced dependence of the solution to all
of the values taken into consideration in the minimization process
(just like when calculating the median value of an even number of

observations). The pitch-independence may be due to the reducec 050 : et LT
emphasis put on the envelope peaks by the 1-norm LP estimation
than the traditional 2-norm LP estimation in the minimization pro- 95 20 s 0
cess to reduce the outliers of the pitch excitation. The common bit/frame

LP analysis tries to cancel the pitch harmonics by putting some of

the poles very closed to the unit circle. The 1-norm approach ac-; ) N .
knowledges the existence of the pitch harmonics, although it do%gdlijfrfgrgh\t/agﬁzs iratgfgirlggzpeﬂzl ?i'S;?;t'gﬂébvzljt%];orLVSOI'DC;;ii
not try to cancel them because its purpose is not to fit the error intof'aveen the two A'; models (obtai.ned withgour scheme, (N8) and with
Gaussian-like pr(_)bability_de_nsity fur_](:tion and conseqyently it Wi”Z—norm minimization (N, = 10)) and their quantized version (LSDyq vs.
let through _the pitch excitation outliers. This results in Sm.OOtherLSDl,gq). The total LSD is also shown comparing the quantized AR eode
s.hor.t-te.rm flllters that are mdependent from .the underlymg pitch eXgin a ground truth reference spectrum (LSP 1q Vs. LSDer2q). In our
.C'ta.tlon in voiced speech. Th.'s makes th‘? pitch detection much €8R¥ethod the bit rate includes the 2 bits necessary to inditeenodel order
ier in the case of a conventional analysis based on the short-ter

h ; - the receiver.
residual. In our case, we go even beyond this sequential approac

1.5¢

log spectral distortion (LSD) [dB]

having jointly estimated short-term and long-term predictors. The 45 \ \
pitch-tracking properties have been shown to outperform the tradi- —reference
tional closed-loop pitch estimation done on the short-term predic- T eenzaton
tion residual. We compared the results of both with a robust refer- 0

ence based on subspace pitch estimation [12]; an example is showr
in Figure 6.

6. CONCLUSIONS =35

In this paper we have introduced a new formulation in the context

of speech coding where the concept of sparsity is used in the lin-
ear predictive scheme.The sparse residual obtained allows a more
compact representation, while the sparse high order predictor en-
genders joint estimation of short-term and long-term predictors that

achieve better spectral matching properties than conventional meth- 25 10 20 30 20 50 50
ods. The short-term predictors obtained are not corrupted by the fine frame

structure belonging to the pitch excitation and their smoother spec-

tral envelopes are robust to quantization. These envelopes are allgft‘):;ure 6: Integer pitch lag (}) tracking performances for our method
represented using lower order AR models compared to tI"ad't'cm%ased on the factorization of short-term and long-term foied compared

LP based_ coder_s, thus requiring fewer_blts_. The long-term predlC\7vith traditional close-loop method based on autocorreatand a reference
tors and, in particular, the pitch lag estimation are also more accys, e based on subspace pitch estimation [12].

rate. These and other interesting properties, like pitch-independence
of the short-term spectral envelopes and shift-independence of the
combined envelopes, lead to attractive performance in speech cod-

30
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