

Speech Coding based on **Sparse Linear Prediction**

Daniele Giacobello¹ Mads Græsbøll Christensen¹ Manohar N. Murthi² Søren Holdt Jensen¹ Marc Moonen³

¹Department of Electronic Systems, Aalborg Universitet, Aalborg, Denmark ²Department of Electrical and Computer Engineering, University of Miami, USA ³Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

1 Introduction

- A new speech coding concept is created by introducing sparsity constraints in a linear prediction scheme both on the residual and on the high order prediction vector.
- The residual is efficiently encoded using well known multi-pulse excitation procedures due to its sparsity. • A robust statistical method for the joint estimation of the short-term and long-term predictors is provided by exploiting the sparse characteristics of the high order predictor.

3.2 Factorization of the high order predictor

- The removal of the spurious near-zero components in A(z) can be done by applying a model order selection criterion that identifies the useful coefficients in the predictor.
- Use of order selection criteria for autoregres-

4 Validation

- Variable rate coding thanks to the model order selection criterion employed.
- Intrinsic classification between voiced an unvoiced speech performed in the factorization procedure of the high-order polynomial.

• We show that better statistical modeling in the context of speech analysis creates an output that offers better coding properties.

2 Sparse Linear Prediction

• The class of problems considered as those covered by the optimization problem associated with finding the prediction coefficient vector a from a set of observed real samples x(n) for $n = 1, \ldots, N$ so that the 1-norm of the error is minimized:

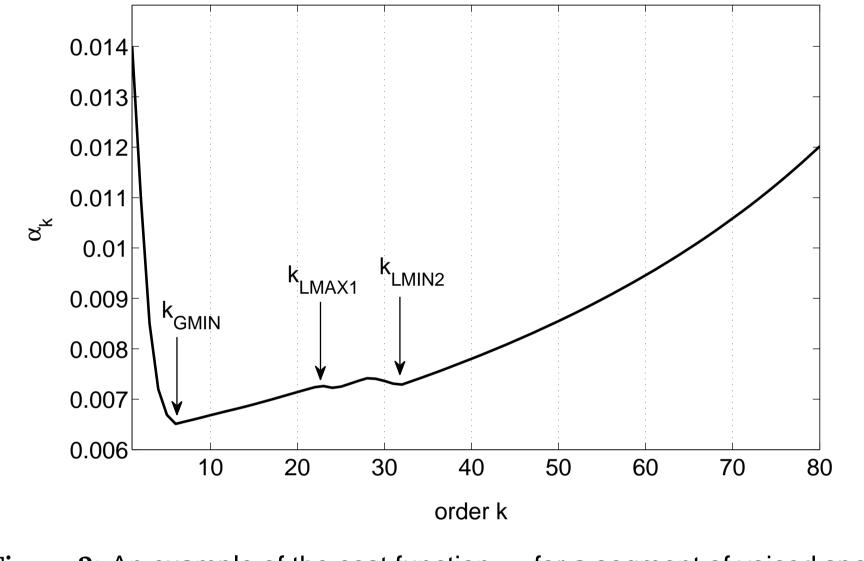
 $\min_{\mathbf{a}} \|\mathbf{x} - \mathbf{X}\mathbf{a}\|_1 + \gamma \|\mathbf{a}\|_1,$

where the 1-norm is employed as a relaxation of the non-convex 0-norm. \mathbf{x} is the observed vector and \mathbf{X} is the matrix containing previous values.

sive (AR) spectral estimation generalized to the minimization of the sum of absolute values:

$$\alpha_k = \frac{1}{N - 2k} \sum_{n=k}^{N-1} \left| x(n) + \sum_{i=1}^k a_k(n) x(n-i) \right|.$$

 $\bullet \alpha_k$ will have a shape that helps us to identify the locations in A(z) of both the shortterm predictor and the locations of the coefficients obtained from the convolution between the short-term and long-term predictors.



- Voiced speech: order of the short-term predictor is usually between $N_{stp} = 6$ and $N_{stp} = 8$ and the corresponding long-term predictor order is between $N_p = 1$ and $N_p = 3$.
- Unvoiced speech: the order is usually between $N_{stp} = 8$ and $N_{stp} = 11$, without long-term information.

Coder	Bit Rate	MOS
Sparse LP	4.6 Kb/s	3.49±0.03
RPE-LTP	12.4 Kb/s	$3.59{\pm}0.06$
CELP	4.7 Kb/s	$3.21{\pm}0.01$

Comparison in terms of bit rate and Mean Opinion Score (MOS) between our coder based on Sparse LP, the RPE-LTP and the CELP scheme. A 95% confidence intervals is given for each value.

5 Discussion

• The sparse residual obtained allows a more

3 Coding Structure

3.1 Selection of the regularization parameter

- The regularization parameter γ is intimately related to the *a priori* knowledge that we have on the coefficients vector $\{a_k\}$ (how sparse $\{a_k\}$ is) considering our minimization criterion from a Bayesian point of view.
- The best trade-off between the 1-norm of the residual and the 1-norm of the solution vector is found as the point of maximum curvature of the curve $(\|\mathbf{x} - \mathbf{X}\mathbf{a}_{\gamma}\|_{1}, \|\mathbf{a}_{\gamma}\|_{1})$ (modified Lcurve).

Figure 2: An example of the cost function α_k for a segment of voiced speech. The values used for the order selection $k_{GMIN} = 6$, $k_{LMAX1} = 23$ and $k_{LMIN2} = 32$ are shown.

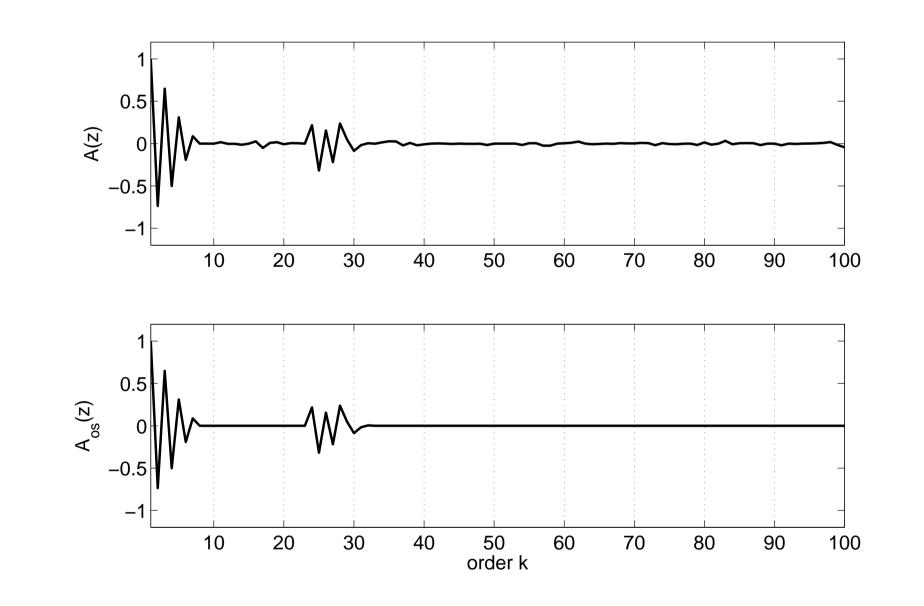


Figure 3: An example of the high order predictor coming out of the minimization process A(z) and its "clean" version $A_{os}(z)$.

3.3 Encoding of the residual

• Use of multipulse encoding (MPE) techniques efficient with the characteristics of the residual.

compact representation, while the sparse high order predictor engenders joint estimation of short-term and long-term predictors that achieve better spectral matching properties than conventional methods.

- The short-term predictors obtained are not corrupted by the fine structure belonging to the pitch excitation and their smoother spectral envelopes are robust to quantization.
- The short-term envelopes are represented using lower order AR models compared to traditional LP based coders, thus requiring fewer bits.
- The long-term predictors and, in particular, the pitch lag estimation are also more accurate.
- Other interesting properties, like pitchindependence of the short-term spectral envelopes and shift-independence of the combined envelopes, lead to attractive performance in speech coding for the presented method.

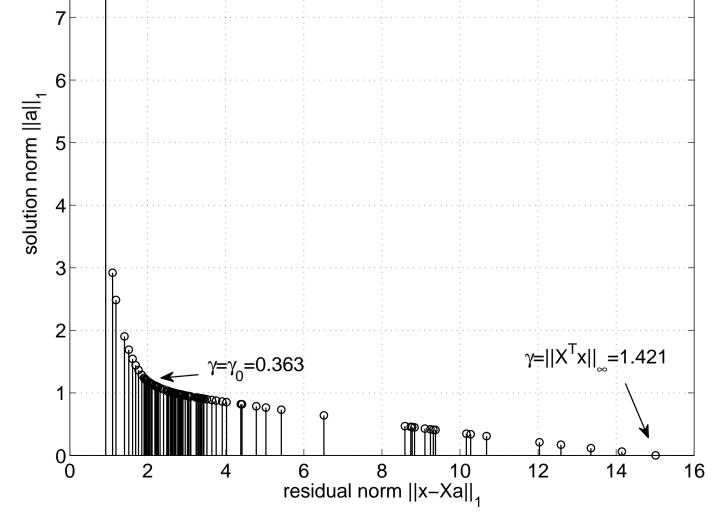


Figure 1: An example of the L-curve $(||\mathbf{x} - \mathbf{X}\mathbf{a}_{\gamma}||_1, ||\mathbf{a}_{\gamma}||_1)$ obtained for a segment of 160 samples of speech (20 ms at 8 kHz); the order is K = 110. The lower and upper bounds of γ and their respective solution norm and residual norm are also shown. γ_0 represents the optimal value of the regularization parameter.

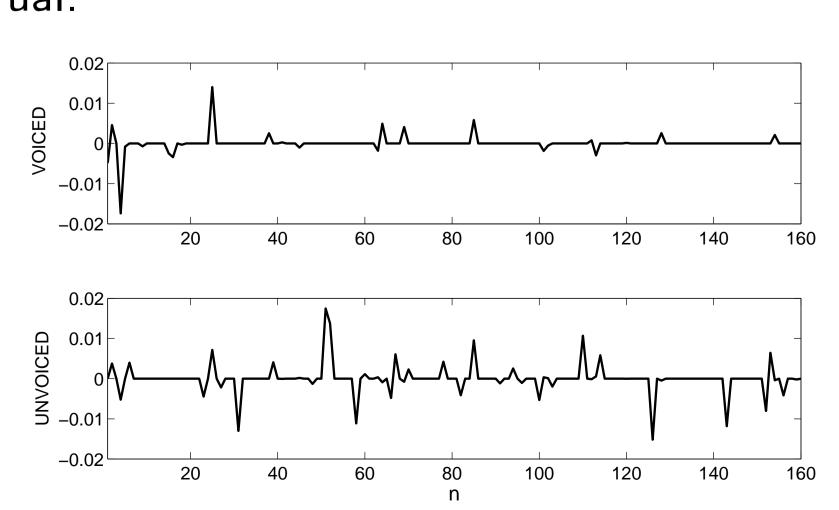


Figure 4: An example of the sparse residual vector for a segment of voiced (above) and unvoiced speech (below).

References

[1] J. Makhoul, "Linear prediction: a tutorial review", Proc. IEEE, vol. 63(4), pp. 561–580, April 1975.

[2] S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004.

[3] D. Giacobello, M. G. Christensen, J. Dahl, S. H. Jensen and M. Moonen, "Sparse linear predictors for speech processing", Proc. INTERSPEECH, 2008.

[4] D. Giacobello, M. G. Christensen, J. Dahl, S. H. Jensen and M. Moonen, "Joint estimation of short-term and long-term predictors in speech coders", Proc. ICASSP, 2009.