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1 Introduction

In any audio system involving simultaneous sound recording and reproduc-
tion, the coupling between the loudspeakers and the microphones can lead
to instabilities which result in annoying howling sound. This problem is also
known as feedback problem. It is even more critical in hearing aid where
the distance between the receiver (loudspeaker) and the microphone is small.
Hearing aids with open fitting have been used more commonly during the
past years as they can improve comfort. They are also more sensitive to feed-
back problem which is limiting the possible hearing aid amplification gain.
There is two different approaches to solve this problem. The first one is to
prevent feedback effects, using techniques based on acoustic path identifica-
tion [1]. Another solution is to cancel the howling when it is occurring. The
system proposed here is based on the second approach.
The first step is to detect if howling is present. When howling appears, the
system is oscillating. Works have been done to track oscillation mainly using
zero-crossing rate [2, 3] or adaptive notch filtering [4]. The method presented
here is based on power peak to average ratio in frequency bands. To make
the detection more robust, it is used jointly with an hangover scheme.
Once the howling is detected it has to be attenuated, one straight forward
method is to use notch filters. This processing is degrading the signal in
the band where the filter is canceling the howling component. Therefore the
filtering is combined with audio restoration process.
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This report present the steps of the howling attenuation and successive audio
restoration.

2 Attenuation

In order to guarantee an efficient restoration of the corrupted signal, a
first attenuation of the howling effect is necessary. This is done since in
a latter stage we are processing the audio signal employing the analysis-
modification-synthesis (AMS) framework using discrete short-time Fourier
transform (DSTFT). The DSTFT is particularly sensitive to the howling
problem. In particular, due to the small windows used (in order to keep
the algorithmic delay low) that have low spectral resolution, the howling fre-
quency tend to mask a large portion of the spectrum making the restoration
process hardly feasible. The attenuation of the howling takes effect using a
notch filter. The general form of a second-order notch filter is:

G(z) =
1 − 2 cos(ω0)z

−1 + z−2

1 − 2p cos(ω0)z−1 + p2z−2
, p < 1, (1)

where ω0 is the frequency that we wish to reject and p is a control parameter
that influence the band B around ω0 where the notch filter operates. The
following approximation holds well:

B ≈ 2 − 2p [rad/s], (2)

and it is easy to see that for p → 1 we have B → 0. The howling ef-
fect has important properties that we wish to exploit in order to attenuate
it efficiently. It was noted from initial preliminary analysis of the howling
phenomenon that the frequency estimator was highly attracted to the low
frequency region especially in speech signals. In order to avoid this problem,
we restrict the estimation of the howling frequency to frequencies above 500
Hz [5]. It is also important to notice that the when the howling effect is
taking place, the howling frequency does not drift, therefore not requiring a
constant adaptation of the taps. Considering this, the general structure of
the adaptive notch filter [6] has been modified to fit our needs. Also the fuzzy
detection presented in the previous section gives us a likelihood parameter α
that we also wish to exploit. We divide our scheme into two parts a howling
frequency detection and a filtering part.
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2.1 Frequency Estimation

The frequency estimation is done using the method in [7] on a N samples
audio segment in order to have at the instant n a frequency estimation based
on the current sample x(n) and the vector of N previous samples [x(n−N −
1), . . . , x(n − 1)] requiring an initial buffer of N − 1 samples. The signal is
masked using the N fuzzy decision [α(n − N − 1), . . . , α(n)] in order to put
more emphasis on the corrupted parts.

2.2 Notch Filtering

Once we have an estimation of the howling frequency, we can just plug the
parameters ω0(n) and p(n) into the equation (1):

y(n) = x(n) − 2 cos(ω0(n))x(n − 1) + x(n − 2)

+ 2p(n) cos(ω0(n))y(n − 1) − p(n)2y(n − 2).
(3)

Here too we can use the fuzzy detector in order to improve the overall effi-
ciency of the algorithm, since the estimation in the initial part of the howling
may not be totally accurate. The parameter p(n) is related to the band of the
notch filter, therefore the stronger the howling, the wider the band has to be.
Bounding the value of p between 0.6 and 0.95 and knowing that α is always
between 0 and 1, we can find a function that relates the two parameters:

p(n) = f(α(n)). (4)

A linear function has been used for this purpose. Furthermore, we can modify
the output of the filtering by weighting the output of the notch filter in respect
to its howling likelihood:

u(n) = (1 − α(n))x(n) + α(n)y(n). (5)

It is clear that when α(n) = 0 no attenuation takes place. Also, when α = 1
for more than 200 samples (10 ms at 20 KHz) we interrupt the adaptation
considering this time sufficient in order to find an accurate estimation of ω0.

3 Audio Restoration

The audio restoration part is based on autoregressive (AR) model-based in-
terpolation. This interpolation procedure has proved highly successful in the
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time domain restoration problems [8, 9]. In our problem we apply it in the
frequency domain by interpolating the missing part of the spectrum that has
been corrupted by howling. Since we have already applied a notch filter in
order to reduce the howling effect, we can easily identify the part that has to
be substituted as we know the central frequency ω0 and the band B of the
notch filter. The steps of the restoration process are the following:

1. Consider a segment of N samples of windowed audio data coming out
of the notch filter, forming a vector x = [x(n), . . . , x(n + N − 1)],
consider X its Discrete Fourier Transform over NDFT = N samples
and the partition of half of the DFT coefficients due to the conjugate
symmetry Xp = [X(1), . . . , X(N/2)].

2. Consider the notch filter parameters: the central frequency of ω0 and
its bandwidth B = 2 − 2p and transform them in the DFT domain:

ωd =⌈
ω0

π
·
N

2
⌉;

Bd =⌈
B

π
·
N

2
⌉.

(6)

Knowing these two parameters, we can find the starting and ending
indexes of the howling degraded part of the DFT spectrum ib = ωd −
Bd/2 and ie = ωd + Bd/2.

3. Xp is then partitioned into three sections: the corrupted section that
we will consider as unknown Xu = [Xp(ib), . . . , Xp(ie)]

T , the samples
to the left of the gap Xkl = [Xp(1), . . . , Xp(ib − 1)]T and the remaining
known samples to the right of the gap Xkr = [Xp(ie+1), . . . , Xp(N/2)]T :

Xp = [XT
kl XT

u XT
kr]

T . (7)

We then form a single vector of known samples Xk = [XT
kl XT

kr]
T and

express Xa in terms of its known and unknown components as:

Xp = K Xk + U Xu, (8)

where U and K are the “rearrangements” matrices.

4. Consider now the data samples Xp as generated by an AR process with
parameters a, we can rewrite the excitation vector as:

e = A Xp = A(K Xk + U Xu), (9)
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where:

A =



















−a∗

P · · · −a∗

1
1 0 0 · · · 0 0

0 −a∗

P · · · −a∗

1
1 0 0 · · · 0

...
...

. . . . . . . . . . . . . . .
...

...
· · · 0 0 −a∗

P · · · −a∗

1
1 0 0
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P · · · −a∗

1
1 0

0 0 · · · 0 0 −a∗

P · · · −a∗

1
1



















.

Note that e is not the interpolation error, but an estimate of the under-
lying excitation signal. It is therefore important to define properly the
statistical properties of this excitation, i.e. the error criterion in the
minimization process. It has been shown that the complex Laplacian
probability density function (pdf) is more desirable in order to describe
the DFT coefficients rather than a Gaussian pdf (see, for example, [10]).
According to this, the maximum a posteriori (MAP) approach is done
on the following distribution:

p(Xu|Xk, a) ∝ exp(−‖e‖1) = exp(−‖A(K Xk + U Xu)‖1)

e ∈ C
N/2

(10)

and it is equivalent to the following convex optimization problem [11]
which we call Least Absolute Auto-Regressive (LAAR) Interpolator:

variables e, XLAAR
u complex

minimize ‖e‖1

subject to e = A(K Xk + U XLAAR
u )

(11)

5. The vector obtained XLAAR
u is then incorporated into the DFT coeffi-

cients vector using the relations in (8):

XOUT
p = K Xk + U XLAAR

u . (12)

The other side of the DFT spectrum ([N/2 + 1, . . . , N ]) is also replace
with the new DFT coefficients exploiting the conjugate symmetry. We
then anti-transformed in the time domain.
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One question still standing is what to use as estimation of the AR vector
a in the MAP approach in (10). The problem considered is based on the
following auto-regressive model, where the absolute value of the known and
reliable DFT sample Xk(n) is written as a linear combination of P past
samples:

Xk(n) =
P

∑

p=1

a∗

pXk(n − p) + e(n). (13)

Using the same error distribution as in (10), we find the AR coefficients by
solving the following minimization problem:

variables e, a complex

minimize ‖e‖1

subject to e = Xk − Mka
∗

(14)

where:

Xk =







Xk(N1)
...

Xk(N2)






,Mk =







Xk(N1 − 1) · · · Xk(N1 − P )
...

...
Xk(N2 − 1) · · · Xk(N2 − P )







The starting and ending points N1 and N2 can be chosen in various ways
assuming that Xk(n) = 0 for n < 1 and n > Nk. We set N1 = K + 1
and N2 = Nk. If the error minimization criterion would have been the least
squares (LS) it would have lead us to the covariance method [12]. It is
important to notice that we are only considering the DFT coefficients that
we labeled as known and reliable {Xk(n)}. The order P can be chosen on a
frame-by-frame basis using a model-order selection approach [12] or can be
chosen as fixed.

This scheme is incorporated into an analysis-modification-synthesis (AMS)
framework and the output signal is resynthetized in a overlap-add fashion ap-
plying a gain correction due to the initial windowing. In our experimental
analysis we used an hamming window of N = 256 and before the next DFT
computation the window is shifted by R = 128 samples. The algorithmic
delay introduced is 12.8 ms at 20 KHz. In this case we have found Nk is
usually between 90 and 110 and the order K is usually between 20 and 30.
We chose a fixed order AR analysis with P = 30. Examples are shown in
figure. 1 and 2.
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Figure 1: Example of functioning of the LAAR interpolation with ωd = 63
and Bd = 22 (notch filter working with p = 0.7). The figure shows the
log-magnitude domain of a speech signal.
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Figure 2: Example of functioning of the LAAR interpolation in time domain.
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