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1 Introduction

•Linear Prediction suffers from well known
problems when the 2-norm error minimization
criterion is employed in the analysis and cod-
ing of voiced speech.

•The usual approach is to find coefficients for
the short-term and long-term signal correla-
tion in two different steps, leading to inher-
ently suboptimal solutions.

• In this work we define a joint estimation ap-
proach based on the observation of the behav-
ior of the short-term and long-term cascade
polynomial.

• Imposing sparsity on a high order predictor, we
obtain a polynomial that can be easily factor-
ized into long-term and short-term predictors.

•This method incorporated into an ACELP
scheme shows to have better performance
than traditional cascade methods and other
joint estimation methods.

2 Joint Estimator

• In order to remove near-sample redundancies
and distant-sample redundancies, a cascade
of a short-term linear predictor F (z) and a
long-term linear predictor P (z) is employed.

•The cascade of the two predictors corresponds
the multiplication in the z-domain of the two
transfer functions:

A(z) = F (z)P (z) = 1 −
K
∑

k=1

akz
−k

= (1 −
Nf
∑

k=1

fkz
−k)(1 −

Np
∑

k=1

gkz
−(Tp+k)).

•A(z) will therefore be highly sparse. Sparsity
is then taken into account in new error mini-
mization criterion:

min
a

‖x − Xa‖2
2 + γ‖a‖1,

where the 1-norm is employed as a relaxation
of the non-convex 0-norm and:
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•A(z) is now similar to the multiplication be-
tween a short-term and a long-term predictor:

A(z) ≈ ALTP (z)Astp(z).

•The first Nstp coefficients are used as the esti-
mated coefficients of the short-term predictor
Astp(z).

•ALTP (z) is created by taking the quotient of
the division between A(z) by Astp(z). The
minimum value and its position will corre-
spond to our estimate of the pitch gain and
delay (parameters of the predictor P (z)):

gp = min{aLTP},

Tp = arg min{aLTP}.

where {aLTP} are the coefficients of ALTP (z).
An example is shown Figure 1.
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Figure 1: (a) and (b) show a comparison between the polynomial obtained
with regularized minimization A(z) and multiplication of the two predictors
F (z)P (z) obtained in cascade; (c) and (d) a comparison of the two long-
term predictors ALTP (z) and P (z).

3 Regularization Parameter

•The regularization parameter γ is intimately
related to the a priori knowledge that we have
on the coefficients vector {ak} (how sparse
{ak} is) considering our minimization crite-
rion from a Bayesian point of view.

•The best trade-off between the 2-norm of the
residual and the 1-norm of the solution vector
is found finding the point of maximum cur-
vature of the curve (‖x − Xaγ‖2,‖aγ‖1) (L-
curve).

•γ is bounded (0 < γ < ‖XTx‖∞).

•We investigate three approaches for the se-
lection of γ based on the magnitude of the
difference between the encoded-decoded sig-
nal and the original signal:
constant (Rc). The value that on average
gave the best result.
adaptive (Ra). The value of γ intimately re-
lated to the pitch gain gp. We update γ using
the following approximate relation:

γ(n + 1) = −0.18g2
p(n) + 0.2.

optimal (Ro). γ is tuned for every frame
analyzed in order to obtain the best result.

•Selection of γ is based on the magnitude of
the difference between the encoded-decoded
signal and the original signal.

4 Validation

•The joint method is implemented in an
ACELP scheme.

•The order of the optimization problem is K =
110 and the frame length is N = 160 (20
ms). The order of the short-term and long-
term predictors are respectively Nstp = 12 and
NLTP = 1.

•Using K = 110 we can cover pitch pitch fre-
quencies in the interval [82 Hz, 571 Hz].

•Residual vector is encoded using 40 non-zero
samples constrained with ±1 values and a gain
(Algebraic Codebook).

•For each method (Rc, Ra, Ro, Aj), the sig-
nals coming out of the encoding-decoding
scheme are compared to the original speech
and the traditional ACELP Ac, PESQ evalu-
ation is then performed.

METHOD ∆DIST ∆MOS

Ro 2.05±0.06 dB 0.11±0.00

Ra 1.65±0.11 dB 0.07±0.00

Rc 1.04±0.27 dB 0.03±0.03

Aj 0.32±0.13 dB 0.00±0.02

Improvements over conventional ACELP Ac in the decoded speech signal
in terms of reduction of log magnitude distortion (∆DIST) and Mean Opin-
ion Score (∆MOS). A 95% confidence intervals is given for each value.

5 Discussion

•The increase in accuracy is given by the
more precise search of the algebraic codeword
(spectrally white residual) and improved pitch
tracking.

•Number of taps is highly customizable and
can be chosen using an Analysis-by-Synthesis
scheme or a Model Order Selection criterion.

•Lower emphasis on peaks is achieved by in-
trinsically taking into consideration the possi-
ble outliers due to the pitch excitation in the
minimization process. This reflects in a lower
sensitivity of the short-term predictor to quan-
tization than traditional LP.

•The cascade Astp(z)P (z) has a very low insta-
bility rate (less than 0.01%).

•The optimization problem can be posed as
a quadratic programming problem and solved
efficiently using an interior-point algorithm.

6 Conclusion

•A new formulation for the minimization pro-
cess involved in the linear prediction has been
presented.

•We have obtained a better statistical fitting
for the model of speech that makes analy-
sis and coding more straightforward and ac-
curate.

•Higher accuracy than with traditional LP have
been obtained due to whiter residual, im-
proved pitch tracking and predictors that are
less sensitive to quantization.
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