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Introduction
Motivation

@ Linear prediction (LP) is an integral part of many modern speech
processing systems.

@ Applications ranging from Coding, Synthesis, Spectral Analysis
and Recognition.

@ The prediction coefficients are usually found through 2-norm
minimization of the prediction error.

@ Many examples where the 2-norm in LP analysis does not work
well.
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Introduction

Why sparse linear prediction?

@ Provides interesting modeling properties in many speech
applications.

@ More synergistic approach to multistage time-domain speech
compression.

@ Why not! ...new formulations for the LP problem may be of general
interest! (e.g. ECG)
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Fundamentals Problem statement

Speech production model

@ A sample of speech x(n) is written as a linear combination of K
past samples:

K
x(n)=> ax(n—k)+e(n), 0<n<N,
k=1

@ The speech production model in matrix form becomes:
Xx=Xa+e

where

a(1) x(N1) X(Np —1) .-+ x(N;p—K)
a= X = X =
a(K) x(N2) X(N2—1) -+ x(Nz —K)

5/ 925



Fundamentals Problem statement

General optimization framework

@ Class of problems considered are covered by the optimization
problem associated with finding the prediction coefficient vector
a € R from a set of observed real samples x(n) forn=1,...,N
so that the p—norm of the prediction error is minimized:

min |[x — Xal[ +~[allg,
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Fundamentals Problem statement

How to choose p, k and ~?

; k
min ||x — Xal[p + ~/lall.

@ maximum a posteriori (MAP) approach for finding a under the
assumptions that a has a Generalized Gaussian Distribution:

amap =arg mgle(x|a)g(a)
= arg max{exp(—|x — Xal|p) exp(—all)}-
@ ~ is related to the prior knowledge of a

@ Sparseness is often measured as the cardinality (so-called || - ||o).

@ The || - |1 is used as a convex relaxation to a problem of
combinatorial nature (NP-hard)
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Sparse Linear Predictors Finding a Sparse Residual

Problem Definition

mﬁ!n Ix — Xal|1.

@ ML approach when the error sequence is considered to be a set
of i.i.d. Laplacian random variables.

@ Outperforms the 2-norm in finding a more proper linear predictive
representation in voiced speech.

@ Better statistical fitting also in unvoiced speech (...and sparser
residual!).

@ Helpful against over-emphasis on peaks in AR spectral estimation.
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Sparse Linear Predictors Finding a Sparse Residual

Example

An excitation similar to the impulse response of the long term predictor
is found for voiced speech when we look for a sparse residual.
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Sparse Linear Predictors Finding a Sparse Residual

Example

The lower emphasis on peaks in the envelope, when 1-norm
minimization is employed, is a direct consequence of the ability to
retrieve the spiky pitch excitation.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Definition

min [[x — Xallx + /a1

@ With a high prediction order the resulting coefficient vector a will
be highly sparse.

@ An AR filter having a sparse structure is an indication that the
polynomial can be factored into several terms.

@ The purpose of the high order sparse predictor is to model the
whole spectrum, i.e., the spectral envelope and the spectral
harmonics.

@ Strong ability of high order LP to resolve closely spaced sinusoids
also helpful in audio processing.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Example

The prediction coefficients vector vector is similar to the multiplication
of the short-term prediction filter and long-term prediction filter usually
obtained in cascade.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Example

Spectral modeling properties of a high order sparse predictor with only
nine nonzero coefficients.
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Sparse Linear Predictors Enhancing Sparsity

Reducing the 1-norm 0-norm mismatch
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@ Reweighted 1-norm minimization can help balancing the
dependence on the magnitude of the 1-norm.

@ Changing the cost function and moving the problem towards the
0-norm minimization with convex tools.
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Definition

@ Exploiting prior knowledge about the sparsity of the signal x, a
limited number of random projections are sufficient to recover our
predictors and sparse residual with high accuracy. With known
predictor:

f=arg mrin IIrlla s.t. &x = ®Hr 1)

@ To adapt CS principles to the estimation of the predictor as well,
we can consider the relation between the synthesis matrix H and
the analysis matrix A (A = H™):

min|rfy st or=o(x — Xa). 2)
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Compressed Sensing in Sparse LP
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An example of LP spectral model obtained through 1-norm minimization and
through CS based minimization for a segment of voiced speech. The predic-
tion order is K = 10 and the frame length is N = 160, for the CS formulation
the dimension of the sensing matrix is M = 80, corresponding to the sparsity
level T = 20.
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Compressed Sensing in Sparse LP
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An example of prediction residuals obtained through 1-norm minimization and
CS recovery. The speech segment analyzed is shown in the top box. The
prediction order is K = 10 and the frame length is N = 160. For the CS
formulation, the imposed sparsity level is T = 20, corresponding to the size
M = 80 for the sensing matrix.
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Example of Application Speech Coding

Problem Definition

@ Better statistical modeling in the context of speech analysis
creates an output that offers better coding properties.

@ Introducing sparsity constraints in a linear prediction scheme both
on the residual and on the high order prediction vector:

min x — Xalls + v lalls.

@ Efficient multipulse residual encoding.

@ Robust statistical method for the joint estimation of the short-term
and long-term predictors.
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Example of Application Speech Coding

Choosing the regularization parameter ~

@ Point of maximum curvature of the modified L-curve
(Ix = Xay [l1.][ay]l1)
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Example of Application Speech Coding

Factorization of the high order predictor

@ Removal of spurious quasi-zero components removed through
model order selection or reweighted 1-norm

0.5 q

A(z)
o

-05 4

10 20 30 40 50 60 70 80 90 100
order k

20/ 25



Example of Application

Encoding of the residual

@ Use of multipulse encoding (MPE) techniques efficient with the

characteristics of the residual.

Speech Coding
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Example of Application Speech Coding

Discussion

@ Possibility Variable rate coding (model order selection and intrinsic
V/UV classification).

Sparse residual allows a more compact representation.
Joint estimation of short-term and long-term predictors.
Smoother spectral envelopes robust to quantization.
Lower order AR models.

Pitch lag estimation is more accurate.

Pitch-independence and shift-independence of the estimated
predictor.

@ NOISE ROBUST!

© © 6 ¢ ¢ ¢
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Discussion Main Issues

Stability

@ Stability is not guaranteed.

@ Reducing the numerical range of the shift-operator for intrinsic
stable solutions.

@ Exploiting LSFs interlacing properties.
@ Constrained 1-norm based on the alternative Cauchy bound.
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Discussion Main Issues

Computational costs

@ The problem seen are computationally expensive (e.g. 1-norm
minimization costs about 20-25 least squares problems).

@ Primal-dual interior point methods can help reducing the costs.
@ Compressed Sensing reduces the number of constraints.

@ Much of the total computational cost in a speech coder is saved by
the “one-step” procedure.

@ Itis a highly structured problem!
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Conclusion
Conclusions

@ Changing the statistical assumptions in LP brought us to define
new formulations of a well-know problem.

@ The methods presented are very attractive for the analysis and
coding of speech signals outperforming traditional LP.

@ Convex optimization algorithms and sparse representation are
booming: new powerful estimator can be easily created using
these tools.
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