Sparse Linear Prediction and Its Applications to Speech Processing

Daniele Giacobello

Aalborg Universitet, Denmark

September, 2009
Linear prediction (LP) is an integral part of many modern speech processing systems.

Applications ranging from Coding, Synthesis, Spectral Analysis and Recognition.

The prediction coefficients are usually found through 2-norm minimization of the prediction error.

Many examples where the 2-norm in LP analysis does not work well.
Why sparse linear prediction?

- Provides interesting modeling properties in many speech applications.
- More synergistic approach to multistage time-domain speech compression.
- Why not! ...new formulations for the LP problem may be of general interest! (e.g. ECG)
Speech production model

- A sample of speech $x(n)$ is written as a linear combination of K past samples:

 $$x(n) = \sum_{k=1}^{K} a_k x(n - k) + e(n), \quad 0 < n \leq N,$$

- The speech production model in matrix form becomes:

 $$x = Xa + e$$

where

$$a = \begin{bmatrix} a(1) \\ \vdots \\ a(K) \end{bmatrix}, \quad x = \begin{bmatrix} x(N_1) \\ \vdots \\ x(N_2) \end{bmatrix}, \quad X = \begin{bmatrix} x(N_1 - 1) & \cdots & x(N_1 - K) \\ \vdots & \ddots & \vdots \\ x(N_2 - 1) & \cdots & x(N_2 - K) \end{bmatrix}$$
Class of problems considered are covered by the optimization problem associated with finding the prediction coefficient vector $a \in \mathbb{R}^K$ from a set of observed real samples $x(n)$ for $n = 1, \ldots, N$ so that the ρ–norm of the prediction error is minimized:

$$\min_{a} \| x - Xa \|_{\rho}^{\rho} + \gamma \| a \|_{k}^{k},$$
How to choose p, k and γ?

$$\min_{a} \| x - Xa \|^p_p + \gamma \| a \|^k_k,$$

- *maximum a posteriori* (MAP) approach for finding a under the assumptions that a has a Generalized Gaussian Distribution:

$$a_{\text{MAP}} = \arg \max_{a} f(x|a)g(a)$$

$$= \arg \max_{a} \{ \exp(-\| x - Xa \|^p_p) \exp(-\gamma \| a \|^k_k) \}.$$

- γ is related to the prior knowledge of a

- Sparseness is often measured as the cardinality (so-called $\| \cdot \|_0$).

- The $\| \cdot \|_1$ is used as a convex relaxation to a problem of combinatorial nature (NP-hard)
Problem Definition

\[\min_a \| x - Xa \|_1. \]

- ML approach when the error sequence is considered to be a set of i.i.d. Laplacian random variables.
- Outperforms the 2-norm in finding a more proper linear predictive representation in voiced speech.
- Better statistical fitting also in unvoiced speech (...and sparser residual!).
- Helpful against over-emphasis on peaks in AR spectral estimation.
Example

An excitation similar to the impulse response of the long term predictor is found for voiced speech when we look for a sparse residual.
Example

The lower emphasis on peaks in the envelope, when 1-norm minimization is employed, is a direct consequence of the ability to retrieve the spiky pitch excitation.
Definition

\[
\min \| \mathbf{x} - \mathbf{Xa} \|_1 + \gamma \| \mathbf{a} \|_1.
\]

- With a high prediction order the resulting coefficient vector \mathbf{a} will be highly sparse.
- An AR filter having a sparse structure is an indication that the polynomial can be factored into several terms.
- The purpose of the high order sparse predictor is to model the *whole* spectrum, i.e., the spectral envelope and the spectral harmonics.
- Strong ability of high order LP to resolve closely spaced sinusoids also helpful in audio processing.
Example

The prediction coefficients vector is similar to the multiplication of the short-term prediction filter and long-term prediction filter usually obtained in cascade.
Example

Spectral modeling properties of a high order sparse predictor with only nine nonzero coefficients.
Reweighted 1-norm minimization can help balancing the dependence on the magnitude of the 1-norm.

Changing the cost function and moving the problem towards the 0-norm minimization with convex tools.
Exploiting prior knowledge about the sparsity of the signal \mathbf{x}, a limited number of random projections are sufficient to recover our predictors and sparse residual with high accuracy. With *known* predictor:

$$ \hat{r} = \text{arg} \min_r \|r\|_1 \quad \text{s.t.} \quad \Phi \mathbf{x} = \Phi \mathbf{H}r $$

(1)

To adapt CS principles to the estimation of the predictor as well, we can consider the relation between the synthesis matrix \mathbf{H} and the analysis matrix \mathbf{A} ($\mathbf{A} = \mathbf{H}^+$):

$$ \min_{\mathbf{a},r} \|r\|_1 \quad \text{s.t.} \quad \Phi \mathbf{r} = \Phi (\mathbf{x} - \mathbf{X} \mathbf{a}). $$

(2)
An example of LP spectral model obtained through 1-norm minimization and through CS based minimization for a segment of voiced speech. The prediction order is $K = 10$ and the frame length is $N = 160$, for the CS formulation the dimension of the sensing matrix is $M = 80$, corresponding to the sparsity level $T = 20$.
An example of prediction residuals obtained through 1-norm minimization and CS recovery. The speech segment analyzed is shown in the top box. The prediction order is $K = 10$ and the frame length is $N = 160$. For the CS formulation, the imposed sparsity level is $T = 20$, corresponding to the size $M = 80$ for the sensing matrix.
Better statistical modeling in the context of speech analysis creates an output that offers better coding properties.

Introducing sparsity constraints in a linear prediction scheme both on the residual and on the high order prediction vector:

$$\min_a \|x - Xa\|_1 + \gamma \|a\|_1.$$

Efficient multipulse residual encoding.

Robust statistical method for the joint estimation of the short-term and long-term predictors.
Choosing the regularization parameter γ

- Point of maximum curvature of the modified L-curve
 \[(\| x - Xa_\gamma \|_1, \| a_\gamma \|_1) \]
Factorization of the high order predictor

- Removal of spurious quasi-zero components removed through model order selection or reweighted 1-norm

![Graphs showing factorization and removal process](image-url)
Encoding of the residual

- Use of multipulse encoding (MPE) techniques efficient with the characteristics of the residual.
Discussion

- Possibility Variable rate coding (model order selection and intrinsic V/UV classification).
- Sparse residual allows a more compact representation.
- Smoother spectral envelopes robust to quantization.
- Lower order AR models.
- Pitch lag estimation is more accurate.
- Pitch-independence and shift-independence of the estimated predictor.
- NOISE ROBUST!!
Stability

- Stability is not guaranteed.
- Reducing the numerical range of the shift-operator for intrinsic stable solutions.
- Exploiting LSFs interlacing properties.
- Constrained 1-norm based on the alternative Cauchy bound.
Computational costs

- The problem seen are computationally expensive (e.g. 1-norm minimization costs about 20-25 least squares problems).
- Primal-dual interior point methods can help reducing the costs.
- Compressed Sensing reduces the number of constraints.
- Much of the total computational cost in a speech coder is saved by the “one-step” procedure.
- It is a highly structured problem!
Conclusions

- Changing the statistical assumptions in LP brought us to define new formulations of a well-known problem.
- The methods presented are very attractive for the analysis and coding of speech signals outperforming traditional LP.
- Convex optimization algorithms and sparse representation are booming: new powerful estimator can be easily created using these tools.