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Introduction

Motivation

Linear prediction (LP) is an integral part of many modern speech
processing systems.

Applications ranging from Coding, Synthesis, Spectral Analysis
and Recognition.

The prediction coefficients are usually found through 2-norm
minimization of the prediction error.

Many examples where the 2-norm in LP analysis does not work
well.
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Introduction

Why sparse linear prediction?

Provides interesting modeling properties in many speech
applications.

More synergistic approach to multistage time-domain speech
compression.

Why not! ...new formulations for the LP problem may be of general
interest! (e.g. ECG)
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Fundamentals Problem statement

Speech production model

A sample of speech x(n) is written as a linear combination of K
past samples:

x(n) =
K

∑

k=1

akx(n − k) + e(n), 0 < n ≤ N,

The speech production model in matrix form becomes:

x = Xa + e

where

a =







a(1)
...

a(K )






, x =







x(N1)
...

x(N2)






, X =







x(N1 − 1) · · · x(N1 − K )
...

...
x(N2 − 1) · · · x(N2 − K )







5 / 25



Fundamentals Problem statement

General optimization framework

Class of problems considered are covered by the optimization
problem associated with finding the prediction coefficient vector
a ∈ R

K from a set of observed real samples x(n) for n = 1, . . . , N
so that the p−norm of the prediction error is minimized:

min
a

‖x − Xa‖p
p + γ‖a‖k

k ,
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Fundamentals Problem statement

How to choose p, k and γ?

min
a

‖x − Xa‖p
p + γ‖a‖k

k ,

maximum a posteriori (MAP) approach for finding a under the
assumptions that a has a Generalized Gaussian Distribution:

aMAP = arg max
a

f (x|a)g(a)

= arg max
a

{exp(−‖x − Xa‖p
p) exp(−γ‖a‖k

k )}.

γ is related to the prior knowledge of a

Sparseness is often measured as the cardinality (so-called ‖ · ‖0).

The ‖ · ‖1 is used as a convex relaxation to a problem of
combinatorial nature (NP-hard)
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Sparse Linear Predictors Finding a Sparse Residual

Problem Definition

min
a

‖x − Xa‖1.

ML approach when the error sequence is considered to be a set
of i.i.d. Laplacian random variables.

Outperforms the 2-norm in finding a more proper linear predictive
representation in voiced speech.

Better statistical fitting also in unvoiced speech (...and sparser
residual!).

Helpful against over-emphasis on peaks in AR spectral estimation.
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Sparse Linear Predictors Finding a Sparse Residual

Example

An excitation similar to the impulse response of the long term predictor
is found for voiced speech when we look for a sparse residual.
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Sparse Linear Predictors Finding a Sparse Residual

Example

The lower emphasis on peaks in the envelope, when 1-norm
minimization is employed, is a direct consequence of the ability to
retrieve the spiky pitch excitation.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Definition

min
a

‖x − Xa‖1 + γ‖a‖1.

With a high prediction order the resulting coefficient vector a will
be highly sparse.

An AR filter having a sparse structure is an indication that the
polynomial can be factored into several terms.

The purpose of the high order sparse predictor is to model the
whole spectrum, i.e., the spectral envelope and the spectral
harmonics.

Strong ability of high order LP to resolve closely spaced sinusoids
also helpful in audio processing.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Example

The prediction coefficients vector vector is similar to the multiplication
of the short-term prediction filter and long-term prediction filter usually
obtained in cascade.
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Sparse Linear Predictors Finding Sparse Prediction Coefficients

Example

Spectral modeling properties of a high order sparse predictor with only
nine nonzero coefficients.
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Sparse Linear Predictors Enhancing Sparsity

Reducing the 1-norm 0-norm mismatch
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Reweighted 1-norm minimization can help balancing the
dependence on the magnitude of the 1-norm.

Changing the cost function and moving the problem towards the
0-norm minimization with convex tools.
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Definition

Exploiting prior knowledge about the sparsity of the signal x, a
limited number of random projections are sufficient to recover our
predictors and sparse residual with high accuracy. With known
predictor:

r̂ = arg min
r

‖r‖1 s.t. Φx = ΦHr (1)

To adapt CS principles to the estimation of the predictor as well,
we can consider the relation between the synthesis matrix H and
the analysis matrix A (A = H+):

min
a,r

‖r‖1 s.t. Φr = Φ(x − Xa). (2)
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Compressed Sensing in Sparse LP
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An example of LP spectral model obtained through 1-norm minimization and
through CS based minimization for a segment of voiced speech. The predic-
tion order is K = 10 and the frame length is N = 160, for the CS formulation
the dimension of the sensing matrix is M = 80, corresponding to the sparsity
level T = 20.
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Sparse Linear Predictors Compressed Sensing in Sparse LP

Compressed Sensing in Sparse LP
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An example of prediction residuals obtained through 1-norm minimization and
CS recovery. The speech segment analyzed is shown in the top box. The
prediction order is K = 10 and the frame length is N = 160. For the CS
formulation, the imposed sparsity level is T = 20, corresponding to the size
M = 80 for the sensing matrix.
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Example of Application Speech Coding

Problem Definition

Better statistical modeling in the context of speech analysis
creates an output that offers better coding properties.

Introducing sparsity constraints in a linear prediction scheme both
on the residual and on the high order prediction vector:

min
a

‖x − Xa‖1 + γ‖a‖1.

Efficient multipulse residual encoding.

Robust statistical method for the joint estimation of the short-term
and long-term predictors.
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Example of Application Speech Coding

Choosing the regularization parameter γ

Point of maximum curvature of the modified L-curve
(‖x − Xaγ‖1,‖aγ‖1)
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Example of Application Speech Coding

Factorization of the high order predictor

Removal of spurious quasi-zero components removed through
model order selection or reweighted 1-norm
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Example of Application Speech Coding

Encoding of the residual

Use of multipulse encoding (MPE) techniques efficient with the
characteristics of the residual.
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Example of Application Speech Coding

Discussion

Possibility Variable rate coding (model order selection and intrinsic
V/UV classification).

Sparse residual allows a more compact representation.

Joint estimation of short-term and long-term predictors.

Smoother spectral envelopes robust to quantization.

Lower order AR models.

Pitch lag estimation is more accurate.

Pitch-independence and shift-independence of the estimated
predictor.

NOISE ROBUST!!
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Discussion Main Issues

Stability

Stability is not guaranteed.

Reducing the numerical range of the shift-operator for intrinsic
stable solutions.

Exploiting LSFs interlacing properties.

Constrained 1-norm based on the alternative Cauchy bound.
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Discussion Main Issues

Computational costs

The problem seen are computationally expensive (e.g. 1-norm
minimization costs about 20-25 least squares problems).

Primal-dual interior point methods can help reducing the costs.

Compressed Sensing reduces the number of constraints.

Much of the total computational cost in a speech coder is saved by
the “one-step” procedure.

It is a highly structured problem!
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Conclusion

Conclusions

Changing the statistical assumptions in LP brought us to define
new formulations of a well-know problem.

The methods presented are very attractive for the analysis and
coding of speech signals outperforming traditional LP.

Convex optimization algorithms and sparse representation are
booming: new powerful estimator can be easily created using
these tools.
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