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Abstract

In this paper, we give an overview of a scheme to jointly code the
information about location and amplitude of the nonzero coefficients in
a sparse vector, first proposed in [1]. By exploiting the properties and
relations between the Linear Prediction and Minimum Variance Dis-
tortionless Response spectra, it is able to transform this information
into a prediction filter. This schemes allows for systematic trade-offs
between bit allocation and accuracy of the sparse representation in a
manner hitherto not possible.

1 Introduction

In signal compression, a great deal of attention has been focused lately on
sparse representation given that many natural signals (e.g., images or audio)
exhibit a clear underlying sparse structure when the proper linear transform
is applied. Despite the rich promise of sparse signal representation in coding
applications, we believe that their development lacks a clear relation between
sparsity and bit rate. In particular, few significant coefficients in a transform
domain do not necessarily correspond to a decrease in the number of bits
required to describe the signal.
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2 Properties of LP and MVDR Spectra

In this section we illustrate the properties of LP and MVDR spectra that are
being used in our formulation. Let us consider first consider an input signal
consisting on the sum of K real cosine signals

u(n) =
K

∑

i=1

ci cos(ωin), (1)

and the corresponding correlation sequence

r(m) =
K

∑

i=1

2S(ωi) cos(ωim), (2)

where S(ωi) = |ci|
2/4. The input signal exhibits a discrete line spectrum at

the positive and negative frequencies ±ωi, i = 1, . . . , K with spectral powers
S(ωi).

Lemma 1. Define r(m) =
∑K

i=1 2S(ωi) cos(ωim), a correlation sequence, a
linear prediction filter AM(z) with order M = 2K

AM(z) = 1 +
M

∑

i=1

akz
−k, (3)

has zeros at the 2K positive and negative frequencies ±ωi, i = 1, . . . , K, i.e.
AM(e±ωi) = 0.

Therefore, an Mth order linear prediction filter places its filter zeros at
the frequencies of the line spectrum, providing accurate frequency location
information, but not amplitude information, since AM(e±ωi) = 0. It is easy
to prove that AM(z) is a palindromic monic polynomial where all the roots
lie on the unit circle [2].

Now we state a property of the MVDR spectrum that we exploit for
modeling amplitude information.

Lemma 2. Define r(m) =
∑K

i=1 2S(ωi) cos(ωim), a correlation sequence.

The MVDR spectrum P
(M)
MV of order M = 2K − 1 models the powers of the

line spectra exactly. P
(M)
MV (ωi) = S(ωi).



Details of the MVDR spectral modeling of exponentials are in [3]. With
the results on linear prediction modeling of frequency location information,
and MVDR modeling of amplitude information, we can state the following.

Theorem 1. Define r(m) =
∑K

i=1 2S(ωi) cos(ωim) with ωi 6= 0, π. Then

the prediction error variance P
(2K−1)
e and reflection coefficients Γm, m =

1, . . . , 2K−1 corresponding to a 2K−1 order linear prediction filter A2K−1(z)
based on r(m), are sufficient to recover the line frequency locations ωi and
the spectral powers S(ωi) exactly.

Outline of Proof. Note that from the given r(m) and the constraints ωi 6= 0, π,
we know that Γ2K = 1. Consequently the given Γm, m = 1, . . . , 2K − 1,
are sufficient to construct the order 2K linear prediction filter A2K(z). In
particular, given Γ2K = 1, the relation between the two predictor is [4]:

A2K(z) = A2K−1(z) + z−2KA2K−1(z
−1). (4)

From Lemma 1, A2K(z) has its filter zeros at the frequencies ωi. The Γm,

m = 1, . . . , 2K−1 and P
(2K−1)
e can be used to obtain the order 2K−1 MVDR

spectrum [5]. From Lemma 2, P
(M)
MV model the spectral powers exactly at the

line frequencies, ωi.

3 Joint coefficients location and amplitude

coding

Let us now consider the problem of coding K nonzero coefficients from a
sparse vector of length N (K << N). The K coefficients have positions
p1, . . . , pK , and are allowed to range from 1 ≤ pi ≤ N . Each coefficient pi is
weighted by sigi, where si is the sign and gi is its positive amplitude.

3.1 Encoding

An autocorrelation sequence is constructed as follows:

r(m) =
K

∑

i=1

2gi cos

(

π
pi

N + 1
m

)

. (5)



This sequence has a corresponding discrete line spectrum in the frequency
domain. The “sampling frequency” corresponds to 2(N + 1) and the spec-
tral peaks are positioned at the frequencies ωi = π/(N + 1) which encode
the coefficient position information. The line spectra at the frequencies ωi

have corresponding powers gi which encode the amplitude information. The
2K − 1 order linear predictor A2K−1(z) and corresponding prediction error

variance P
(2K−1)
e are computed using the Levinson-Durbin algorithm using

r(m). According to Theorem 1, the parameters of the filter are sufficient for
recovering all the informations relevant to the perfect reconstruction of the
sparse vector.

When the signs are both negative and positive, we can procede in two
ways, one sending the signs separately but we can also easily incorporate this
information by modifying the construction of the correlation sequence. By
utilizing multiples of 0.5π/(N +1), we can incorporate sign information. For
negative signs, we follow the convention of adding the fractional frequency
value 0.5π/(N + 1) to the original line frequency. In particular if si = −1,
we add 0.5π/(N + 1) to the original line frequency πpi/(N + 1) to obtain a
new line frequency value π(pi + 0.5)/(N + 1) that is used in the construction
of the autocorrelation sequence in (5):

r(m) =
K

∑

i=1

2gi cos

(

π
pi + 0.5

N + 1
m

)

. (6)

3.2 Decoding

The order 2K linear prediction filter A2K(z) is constructed from A2K−1(z),
and Γ2K = 1 using the relation provided in (4). From Lemma 1, the zeros of
A2K(z) are found at the frequencies ωi which give the information about the
locations:

pi =
N + 1

π
ωi. (7)

The MVDR spectrum is directly computed from the coefficients of A2K−1(z)

and the prediction error variance P
(2K−1)
e . A fast algorithm for computing

the MVDR spectrum is given in [5]. From Lemma 2, the 2K−1 order MVDR

spectrum models the gain informations exactly, i.e. P
(M)
MV (ωi) = gi.



3.3 Example of Joint Coding

Let us provide now a simple example to clarify the concepts illustrated above.
Consider a sparse vector N = 100, where only K = 5 coefficients are nonzero.
The position vector is p = [12, 34, 69, 74, 83] with corresponding gain vector
g = [1,−10, 32,−52, 7]. The correlation sequence is computed with the sign
modification, the 2K−1 = 9 prediction vector A9(z) and the prediction error
P 9

e are then calculated via the Levinson-Durbin algorithm and transmitted
to the decoder (assume for now that no quantization takes place).

The decoder computes the 2K = 10 order linear prediction filter A10(z)
from A9(z), using Γ10 = 1 (4). The roots of A10(z) are calculated and the
information about the location is retrieved using (7) p̂ = [12, 34, 69, 74, 83].
The MVDR spectrum of order 2K − 1 = 9 is constructed using A9(z) and
the prediction error vector P 9

e and evaluated at the positions of the order
2K = 10 linear prediction filter’s zeros to determine the gain information
p̂ = [1, 10, 32, 52, 7]. Combining with the sign information we obtain the
original gain vector. In Figure 1, we show an example of the order 10 LP
spectrum, from which the location information is retrieved, and the order 9
MVDR spectrum from which the gain information is found. These spectra
do not need to be computed, they are just shown for clarity of presentation.
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Figure 1: In the top box is shown the LP spectrum. The zeros of the LP filter

are used to determine the pulse positions and sign information. The MVDR

spectrum below is evaluated at the LP filter zeros used and determines the

gain values.



4 Perturbation and Quantization Robustness

In Section 3 we have looked at the encoding-decoding procedure necessary for
our method. In synthesis, if we wish to transmit the information regarding K
nonzero components (positions and amplitude) in a N length sparse vector,
we need an order 2K − 1 prediction vector A2K−1(z) and the variance of its

prediction error P
(2K−1)
e . This new parameters set carries all the information

we need. It is important now to evaluate the robustness of this information
to perturbation and quantization noise. In particular, we will require the
positions of the K components not to shift. Consider:

A2K−1(z) = 1 +
2K−1
∑

i=1

aiz
−i =

2K−1
∏

i=1

(1 − ziz
−1) (8)

we know that the roots ωi of the polynomial A2K(z) constructed from A2K−1(z)
through the relation in (4):

A2K(z) = 1 +
2K−1
∑

i=1

(ai + a2K−i)z
−i + z−2K (9)

are directly related to the positions by (7), therefore we can analyze the
sensitivity of this information as the partial derivative ∂pm/∂ak, the variation
of the mth position (The roots of A2K(z)) as a function of the variation of
the kth coefficient of A2K−1. To do so, we use the following relations:

∂A2K(z)

∂ak

=z−k + z2K−k,

∂A2K(z)

∂zh

= − z−2K

2K
∏

i6=h

(z − zi);
(10)

working with this two relations and posing z = zh, we obtain:

∣

∣

∣

∣

∂zh

∂ak

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

z2K−k
h + z4K−k

h
∏2K

n6=h(zh − zn)

∣

∣

∣

∣

∣

(11)

since the roots of A2K(z) are complex conjugates and lie on the unit circle
zi = e±jωi ,i = 1, . . . , K the only information relavant to us is the phase ωi,



which is related to the position from the formula in 7. Finally, we obtain
∣

∣

∣

∣

∂ph

∂ak

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ejph
2K−k
N+1

π + ejph
4K−k
N+1

π

∏K

n6=h(e
j

ph
N+1

π − ej
pn

N+1
π)2

∣

∣

∣

∣

∣

, (12)

that relates the variation of the ph position to the variation of the ak coeffi-
cient. This formula efficiently state what can be intuitively assumed: a clear
dependence to the proximity of the locations and the length of the sparse
vector N . What we propose now is to find the “weakest link”, i.e. the most
sensitive coefficient of ak of A2K−1(z) related to the shift of the position ph. In
order to do so we propose to construct a sensitivity matrix where each value

Si,l =
∣

∣

∣

∂pi

∂al

∣

∣

∣
. By picking the highest value (i.e., the most sensitive relations

between coefficient and position), we found the coefficient al most sensitive
to quantization. Given this, we find the maximum ∆ of quantization that
will not move the root location too much (i.e., more than 1/2 of a sample
if the sign location is transmitted separately or 1/4 otherwise) by numerical
optimization over the single parameter ∆.

Note we might also allow for different delta’s, i.e., different delta’s for
each sparse signal but also different delta’s for the individual elements of the
sparse vector. This can be done by ranking the sensitivity matrix according
to “sensitivity”. The delta’s should then be conveyed using additional bits
(side information).
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