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ABSTRACT Since conventional LP, based on the 2-norm minimization of

Linear prediction has generally failed to make a breakthrough in authe prediction error, is generally performing poorly in audio pro-
dio processing, as it has done in speech processing. This is mos¢Ssing, several methods have been introduced to improve the LP
due to its poor modeling performance, since an audio signal is usi§tep in audio processing (see [12] for an overview). High-order au-
ally an ensemble of different sources. Nevertheless, linear predidoregressive (AR) models seem to yield some of the highest scores
tion comes with a whole set of interesting features that make thé spectral flatness therefore the predictor retains a great deal of
idea of using it in audio processing not far fetched, e.g., the strongpectral information but it does not provide any useful information
ability of modeling the spectral peaks that play a dominant role irfor coding purposes.

perception. In this paper, we provide some preliminary conjectures  In our recent work, we have introduced several new predictors
and experiments on the use of high-order sparse linear predictofer speech processing applications [13]. In particular in [14], we
in audio processing. These predictors, successfully implementelteve shown the benefits of using high-order sparse linear predic-
in modeling the short-term and long-term redundancies present it#9rs to model the cascade of short-term and long-term predictors,
speech signals, will be used to model tonal audio signals, botRroviding an efficient decoupling between the two contributions. In
monophonic and polyphonic. We will show how the sparse pregeneral, for a high-order AR filter, a sparse structure is an indica-
dictors are able to model efficiently the different components of thdion that the polynomial can be factored into several terms. The
spectrum of an audio signal, i.e., its tonal behavior and the spectrghallenge would now be to extend these early contributions to the

envelope characteristic. case of audio signals. We will test our algorithms and see how the
high-order sparse predictors with few nonzero coefficients are ca-
1. INTRODUCTION pable to model efficiently the tonal behavior of the audio signal as

) o . well as the spectral envelope characteristic.
Linear prediction (LP) is arguably one of the most successful tools  The paper is organized as follows. In Section 2, we intro-
for the analysis and coding of speech signals [1]. Its success caflce the tonal audio signals used in the following sections, provid-
be explained by the correspondence between the modeling of thgy ideas on how high-order predictors with a sparse structure can
speech production process and the LP analysis. In particular, th@odel the different components of the audio signal. In Section 3,
all-pole model corresponding to the LP filter can be seen as a goqge jllustrate the LP methods used in our experiments and in Section

approximation of the vocal tract transfer function [2]. Moreover, 4 e provide the experimental results. Finally, Section 5 concludes
the use of LP in speech coding techniques guarantees interestifgs paper.

attributes like low delay, scalability and, in general, low complexity.
The predictor in this case is used to decorrelate the speech waveform 2 TONAL AUDIO SIGNAL MODEL
leaving a prediction residual that is easier to encode. ] ] o o )

The LP model is definitely less popular in audio processingWe will only consider tonal audio signals, that is, signals having a
The main reason is that the predictor does not necessarily model apectrum containing a finite number of dominant frequency compo-
physical mechanism that generated the audio signal. The genera@nts at multiples of the fundamental frequerfgy(usually found
difficulties in the accurate parametrization of audio signals [3] haven the range 100-1000 Hz). This model covers the majority of au-
led the way to transform-based audio coders that exploit perceptudio signals. The performance of the different LP models will be
models of human hearing [4]. Nevertheless, the all-pole model ogvaluated for three types of audio signals. We will consider true
the LP filter is generally a quite adequate tool to model the specmonophonic and true polyphonic audio signals and synthetic audio
tral peaks which play a dominant role in perception [5]. This andsignals consisting of a sum of harmonic sinusoids.
the properties that made LP successful in speech coding (low delag, ) o
scalability and low complexity) make the extension of LP to audio2-1 Monophonic audio signals
coding also appealing. Several examples can be found in literatug the monophonic signal model, it is assumed that all tonal compo-

(see, e.g., [6,7,8, 9)]). Furthermore, in audio analysis, LP fifeis a nents are harmonically related to a single fundamental frequency:
other interesting applications. For example, the whitening proper-

ties of the predictor can be used to obtain fast converging acoustic M
echo and feedback cancelers (see, e.g., [10, 11]). x(n) = Z amcogmMawpn+ @) +r(n), n=1...,L, (1)
=1
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Figure 1:Magnitude spectrum of the monophonic audio signal of Example 1. Figure 2: Magnitude spectrum of the polyphonic audio signal of Example 3.

In the smaller frame, we show a detail of the frequency rafiy800 Hz where
the first harmonics of each of the four monophonic signals amatkd (§n =
{2584,3230,387.6,5168}).

Example 1. The monophonic audio fragment considered was ex-

tracted from a Bb clarinet sound recording in the McGill University

Master Samples (MUMS) collectiors( 44100Hz). The spectrum Q):

of this N= 2048samples fragment, which corresponds to the sam-""

ples 70001 to 72048 of the G4 note recording, is shown in Figure 1. M
The fundamental frequency corresponds §e=f387.6 Hz and the x(n) = z amcogMapn+ @n) +r(n), n=1,....L, (5)
signal has M= 15relevant harmonics. =1

Even though this signal can generally not be considered as output
of an AR process, significant considerations can be made. As it isxcept that the noise tern{n) will be white noise, therefore not
clear from Figure 1, the signal spectrum is made up by two comeontaining low-power harmonics.
ponents: a comb-like structure where the peaks are located in thexample 2. We have built a synthetic signal o=N048samples
multiples of the fundamental frequency and a smooth spectral enwith M = 15 tonal components and random, uniformly distributed
velope that resembles a low-pass filter, since the harmonic structuegnplitudes ¢m € (0,1)) and phases ¢y € [0,2m)). The radial
is more prominent in the lower half of the spectrum. The comb-likefundamental frequency was chosen todag= 271/64, that is, at
structure can be modeled by the filter: fs=44.1 kHz, § = 6891 Hz. The pitch period gbeing equal to
an integer number of sampling periods & 64Ts) will clearly il-
H 1 Gy 2 lustrate the effects of the pitch predictor.

p(2) = Pz 1-pzP’ @ Inthis case, we can also make considerations similar to those made
for the monophonic case. The magnitude spectrum is similar to
the one in Figure 1, the main difference being the predominance
of the harmonic sinusoids over the rest of the spectrum. While the
comb-like behavior can still be modeled by a pitch predi€(z),

G the predictor(z), used to model the smooth spectral envelope of
H¢(2) = 1 - f ) (3) the signal, will now serve to enhance the frequencies where the har-
(2 1- z’;'il fzk monics are located. In particular, the low-pass filter will exhibit a
B sharper transition between the lower half of the spectrum and the
igher frequencies. This necessarily translates into a higher order

whereP = To/Ts (To = 1/ fg) andGp, is a scaling factdt. The low-
pass component can be modeled by an all-pole filter:

The cascade of the two filters corresponds the multiplication in th

z-domain of the their transfer functions: i for F(2).
(g — 1 GiGp G(Gp 2.3 Polyphonic audio signals
a(2) = Az F(2P@ 1- sK jazk The polyphonic audio signals are a finite sum of monophonic sig-
- GiGp 4) nals:
N _ Nt k _ Py’ M Qm
(1 Zk:l fkz~ )(1 Pz ) X(n) = 2 ( Z Omg Coiq(khmn—‘— (qu)) + r(n),
M=l =1 (6)

The signal can therefore be modeled with an order P+ N
sparse predictoA(z). The resulting predictor coefficient vector
a = {a} of the high-order polynomiak(z) will therefore be highly
sparse. We will see how we can take this into account in the line
prediction model and minimization criterion.

n=1,...,L

aphereay q represents the fundamental frequency ofghéh mono-
phonic signal.
Example 3. The polyphonic audio signal considered was generated
by adding four monophonic piano sounds from the MUMS concert
hall Steinway recordings. The samples 2001 to 4048 of the C4, E4,
G4, and C5 note recordings were added to obtain-a R048C ma-
Synthetic tonal audio signals are well suited for examining the modjor chord, plotted in Figures 2. The four fundamental frequencies
eling properties of the high-order sparse LP models presented bere f, = {2584,3230,387.6,5168} Hz, and each of the mono-
low, since these provide exact knowledge of the fundamental frephonic components has 7 relevant harmonics.
quencyfg and the number of harmonics. The model is similar to Linear prediction of polyphonic audio signals is the most challeng-
ing case. Itis also the most significant one, since audio signals are
2If Pis non-integer, a fractional-delay filt&(z) can be used [15]. usually an ensemble of different sources with different fundamental

2.2 Synthetic audio signals consisting of a sum of harmonic si-
nusoidsin white noise




frequencies. The same reasoning we have followed for the case 8f1 High-order LP modeling
monophonic audio signals can be used for polyphonic signals Witht

some important differences. The smooth spectral envelope is clearlM
similar to the monophonic one, therefore requiring a low-order prex
dictor F(2) to model it. The substantial difference comes from the
modeling of the sum of the different comb-like components. In par
ticular, the multipitch structure, differently from (2), will have to be
modeled by:

is well known that a signal composed Mfsinusoids can be mod-

ed exactly using an autoregressive moving average model, i.e.,

RMA(2M,2M) model. This model can be arbitrarily closely ap-

proximated with an AR model, provided that the model orHer

is chosen large enough [18]. We will consider for all our audio

segments & = 1024 order predictor, solution of the 2-norm min-

imization problem (12). The general goal of the high-order model
M g M Gn is to maximize the spectral flatness of the residual. However, the

Hp(2) = b — 217"'4” (7)  all-pole model does not provide hints for factorization, as it does

R &Hl-pmz " not exploits the harmonicity properties of the signal.

which is a pole-zero filter. Since we are interested in an all-pole; 5 pjicn prediction
filter this may translate into a defect in modeling. Nevertheless, in o ) ) ) )
our experimental analysis, we have noticed that, sigce 1, we A monophonic signal with a pitch periof corresponding to an
can write: integer number of sampling periods can be perfectly predicted
M using the one-tap pitch predictor in Eq. (2). Obviously, the pitch

Ho(2) = Gp, ~ Gp ®) p_enod will generally not be an integer multlple of the_sampll_ng pe-
p ; 1-—pz R |_|M1(1— piz ) riod, such that the use of a multi-tap pitch predictor is required for
= = interpolation, or a fractional-delay filter should be used. The draw-
This simplification seems far fetched and obviously requires sombeack with employing only a pitch predictor is that this creates an
further analysis. Nevertheless, we will show it holds quite well inextremely non-smooth residual signal by also attempting to cancel
modeling the harmonic behavior. Just as in the monophonic casbarmonic frequencies which are not present in the input signal. For
also a low-order all-pole model (3) can be used to model the envahese reasons, in this paper we will use a 3-tap pitch predictor [19],
lope. The high-order sparse predictor resulting from the cascade efficient in modeling the decreasing comb-like structure of the sig-

the two contributions will still be sparse: nals analyzed.
The pitch prediction model is the only prediction model in
Ha(2) ~ 1 - GiGp — GiGp which the harmonicity property is exploited. The underlying sig-
Az F(@P(2 1-3f azk nal model of the monophonic audio signal in (1) is harmonic, while
GiG ) the polyphonic signal model in (6) is not. Therefore, while perform-
= N P . ing accurately for the monophonic signal, the pitch predictor fails to
1-5 21— pz?)) recover the different pitch components in the polyphonic audio. In

particular, we have observed, that its estimation of the fundamental
frequencyfo = 1/Tp is similar to a weighted average of the different
fundamental frequenciefy , of the underlying model.

The estimation problems considered in this paper are based on tiBnsidering the two signal models we have introduced for the
following autoregressive (AR) model, where a signal samfi¢is ~ monophonic and synthetic audio (4) and for the polyphonic audio

The order of the high-order sparse predidi(z) willbe K > 5 R +
N; in order to accommodate all the cross terms.

written as a linear combination of past samples: (9), we use the minimization problem in (11) to find the LP coeffi-
K cients imposing = 0. In this way, sparsity of the high-order pre-

_ _ dictor is taken into consideration directly in the minimization prob-

X(n) = k;akx(n k) +e(n). (10) lem. The operatof - ||o represents the so-called 0-norm, i.e., the

cardinality of the vector. A relaxation of this non-convex problem
Here,{ax} are the prediction coefficients aeth) is the excitation is obtained by approximating the 0-norm with the more tractable 1-
of the corresponding AR filter, also referred to as the prediction ernorm or by the iteratively reweighted 1-norm, bringing the solution
ror. We consider the optimization problem associated with findingcloser to the 0-norm [13]. In this paper we will limit the analysis
the prediction coefficient vectar € RX from a set of observed real to the 1-norm. The regularization terynis then clearly related to
samplesx(n) for n=1,...,N so that the prediction error is mini- thea priori knowledge that we have on the coefficients vetn}
mized [16]. This corresponds to the following minimization prob- or, in other terms, to how spargey} is. There are many ways to
lem: choosey. To generate preliminary results, we will consider it fixed
min |x — Xa||p+ vlallk, (11)  (y=0.1). The order of the predictor i& = 1024. The choice of
a p is also non-trivial. Fop = 2 we will obtain a Gaussian residual,
where consistent with the equivalent i.i.d. Gaussian maximum likelihood
x(N1) x(N.—1) - x(Ni—K) approach_to dete_rmilne th_e coe_fficients. The casel i; proba-
bly more interesting: seeing this as a convex relaxation of the 0-
X = : : norm, the residual will be alsgparse providing interesting coding
X(Np—1) -+ x(Np—K) properties that will be subject to further analysis. The minimization
problem considered used is then:

X =

X(Np)

1
and || - ||p is the p-norm defined ax||p = (IN_; |x(n)[P)? for
p > 1. The starting and ending poirt§ andN, can be chosen in
various ways by assumingn) = 0 forn < 1 andn > N. In this pa-
per we will use the most common choiceMyf= 1 andN, = N+K, The high-order LP in (12) does not rely on harmonicity, while the
which is equivalent, whep = 2 andy = 0, to theautocorrelation ~ pitch predictor relies basically only on harmonicity thus greatly
method simplifying the calculations. The high-order sparse LP positions
R ) 2 Tl itself somewhere in between these two approaches, providing sig-
a=argmin|x — Xal3 = (X' X)""X x, (12)  nificant modeling properties similar to (12) but parametrizing the
signal in a more sophisticated way by taking into account the dif-
whereR = XTX is the autocorrelation matrix (whe, =1 and  ferent components of the signal. Furthermore, when the dfder
N> = N+K) [17]. approache® /2 in (12), a number of spurious spectral peaks start

a = argmin|x — Xal|1 + yla[1- (13)
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Figure 3: High-order 2-norm LP (HOLP, above) and high-order sparse LP (HOS- Figure 4:Monophonic audio signal. Frequency response for the all-polb-igler

pLP, below) for a monophonic audio signal. A detail of the coefftsiefiorder 105-125 2-norm LP (HOLP), high-order sparse LP (HOSpLP) and the 4th orderatmspec-

is shown in the frame. The number of nonzero samples in the spadietor is 25. tral envelope (ENV). A detail of the first nine harmonics and the predianodeling
behavior is shown in the smaller frame.
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to appear. This effects can be traced back to the ill-conditioning A o iose
of the normal equation§X " X)X Tx and in particular to the ob- s prpiirli ——
servation matrixX with highly correlated rows when sinusoids are o s

present in the data [20]. The sparsity of the predictor, helps reduc-
ing the ill-conditioning basically applying an “automatic” pruning
of the rows of the observation matrix without the necessapyiori
knowledge used, for example, in [21]. Indeed, the inclusion of the
regularization term in (13) can also be seen as a general method for 150l
solving ill-posed problems [22].
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4. EXPERIMENTAL ANALYSIS _25055"
4.1 Spectral modeling 0 05

In this section we will compare the use of high-order sparse LP with

the Con\_/ent_|onal h_'Qh'Order 2fn0rm L_P- The comparison is done_fOFigure 5: Synthetic sum of sinusoids. Frequency response for the all-pote hig
the audio signals introduced in Section 1 (Example 1-3). The firStrder 2-norm LP (HOLP), high-order sparse LP (HOSpLP) and the 10densmooth
N¢ coefficients belonging to the low-pass filter are chosen using apectral envelope (ENV). A detail of the first two harmonics and thegedibehavior
model order selection criterion [13]. is shown in the smaller frame.

1 15 2
Frequency [Hz] X 10°

4.1.1 Monophonic audio signal

The frequency response of the filters is shown in Figure 4 while thé.1.3 Polyphonic audio signal

two predictors are shown in Figure 3. Itis clear that the predictofrne frequency response of the filters is shown in Figure 6 while the
is an accurate model of the two expected contributid?&) and o predictors are shown in Figure 7. The predictor is less sparse
F(2). In particular the convolutive term is clustered around the inte4han'in the monophonic case, taking into consideration the different
ger pitch delay corresponding to the inverse of the fundamental fré jtipitch components. Furthermore, we notice that the approxi-
quency and the peak is exactly locate®ia: [ fs/ fo| = 113 (Where  ation we have performed in (9), holds quite well and the predictor
fs = 387.6 Hz). Remarkably, the shape resembles the fractionalgeems to model accurately the whole sum of different harmonics
delay interpolation filter [23]. The combination of the two con- ¢oming from the different signals. The only drawback seems the
tributions model_s very accurately the comb-like structure and th%ver-emphasis of the envelope in modeling the low-pass behavior
low-pass behavior (Fig. 4). A 4th order polynomial was enoughihat we have not observed in the other cases. This will be subject
to model the low-pass behavior, this corresponds to the first fouf, frther analysis since at this early point it is difficult to provide
samples of the_ sparse p_redlctlon vector. It is also clear that the og, explanation. In this case also the orler 1024 is excessive:
der K = 1024 is excessive, an ordér > P+ N¢ whereNt ~ 4 racalling thak > ;R +Nj, the order should be alittle higher than
andP = fs/fo would have been sufficient. A final word should 500, Moreover, the number of nonzero samples in the sparse predic-
be spent regarding the sparsity of the vector. The signal, havingy js 53, which is considerably less than the number of coefficients

M = 15 relevant harmonics, could be modeled accurately using agf an ARMA(56,56) model (sum of four signal with = 7 relevant
ARMA(30,30) model. Itis clear that achieving similar performance harmonics each).

with just 25 nonzero samples is an important result that can be ex-
ploited in coding applications. 4.2 Spectral Flatness Performance

4.1.2 Synthetic sum of sinusoids The spectral flatness measure (SFM) of the LP residual [18] in dB

Similar considerations can be made for the synthetic audio signa® & negati\fe _rreatl)llmimbeg WithbSEM) (Ijzli/lszor(;effsponding_to a flat
A 10th order polynomial models the envelope enhancing the freSPectrum. In Table 1 we describe teSFM's, differences in spec-

; ) ; ; al flatness, between the original audio signals (monophonic and
guency present in the first half of the spectrum. The pitch predwtogolyphonic) and its residual provided by the three methods pre-

modelsexactlythe comb like structure since the pitch periggi L e ;
odelsexactlythe comb like structure since the pitch peritis sented in Section 3. It can clearly be seen that high-order 2-norm

equal to an integer number of sampling periolis£ 641s). An ex- dminimization certainly provides a higher spectral flatness (as ex-

ample of the modeling behavior of the predictor is shown in Figur h h . >
5. Igor the sake of bre%ity the predictor Fs)tructure is not shown.g pected) although with a highly dense predictor. The 3-tap pitch-
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