
HIGH-ORDER SPARSE LINEAR PREDICTORS FOR AUDIO PROCESSING

Daniele Giacobello1,2, Toon van Waterschoot2, Mads Græsbøll Christensen3,
Søren Holdt Jensen1, Marc Moonen2

1Dept. of Electronic Systems, Aalborg Universitet, Denmark
2Dept. of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven, Belgium

3Dept. of Media Technology, Aalborg Universitet, Denmark
{dg,shj}@es.aau.dk,{tvanwate,moonen}@esat.kuleuven.be, mgc@imi.aau.dk

ABSTRACT
Linear prediction has generally failed to make a breakthrough in au-
dio processing, as it has done in speech processing. This is mostly
due to its poor modeling performance, since an audio signal is usu-
ally an ensemble of different sources. Nevertheless, linear predic-
tion comes with a whole set of interesting features that make the
idea of using it in audio processing not far fetched, e.g., the strong
ability of modeling the spectral peaks that play a dominant role in
perception. In this paper, we provide some preliminary conjectures
and experiments on the use of high-order sparse linear predictors
in audio processing. These predictors, successfully implemented
in modeling the short-term and long-term redundancies present in
speech signals, will be used to model tonal audio signals, both
monophonic and polyphonic. We will show how the sparse pre-
dictors are able to model efficiently the different components of the
spectrum of an audio signal, i.e., its tonal behavior and the spectral
envelope characteristic.

1. INTRODUCTION

Linear prediction (LP) is arguably one of the most successful tools
for the analysis and coding of speech signals [1]. Its success can
be explained by the correspondence between the modeling of the
speech production process and the LP analysis. In particular, the
all-pole model corresponding to the LP filter can be seen as a good
approximation of the vocal tract transfer function [2]. Moreover,
the use of LP in speech coding techniques guarantees interesting
attributes like low delay, scalability and, in general, low complexity.
The predictor in this case is used to decorrelate the speech waveform
leaving a prediction residual that is easier to encode.

The LP model is definitely less popular in audio processing.
The main reason is that the predictor does not necessarily model any
physical mechanism that generated the audio signal. The general
difficulties in the accurate parametrization of audio signals [3] have
led the way to transform-based audio coders that exploit perceptual
models of human hearing [4]. Nevertheless, the all-pole model of
the LP filter is generally a quite adequate tool to model the spec-
tral peaks which play a dominant role in perception [5]. This and
the properties that made LP successful in speech coding (low delay,
scalability and low complexity) make the extension of LP to audio
coding also appealing. Several examples can be found in literature
(see, e.g., [6, 7, 8, 9]). Furthermore, in audio analysis, LP finds also
other interesting applications. For example, the whitening proper-
ties of the predictor can be used to obtain fast converging acoustic
echo and feedback cancelers (see, e.g., [10, 11]).
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Since conventional LP, based on the 2-norm minimization of
the prediction error, is generally performing poorly in audio pro-
cessing, several methods have been introduced to improve the LP
step in audio processing (see [12] for an overview). High-order au-
toregressive (AR) models seem to yield some of the highest scores
in spectral flatness1, therefore the predictor retains a great deal of
spectral information but it does not provide any useful information
for coding purposes.

In our recent work, we have introduced several new predictors
for speech processing applications [13]. In particular in [14], we
have shown the benefits of using high-order sparse linear predic-
tors to model the cascade of short-term and long-term predictors,
providing an efficient decoupling between the two contributions. In
general, for a high-order AR filter, a sparse structure is an indica-
tion that the polynomial can be factored into several terms. The
challenge would now be to extend these early contributions to the
case of audio signals. We will test our algorithms and see how the
high-order sparse predictors with few nonzero coefficients are ca-
pable to model efficiently the tonal behavior of the audio signal as
well as the spectral envelope characteristic.

The paper is organized as follows. In Section 2, we intro-
duce the tonal audio signals used in the following sections, provid-
ing ideas on how high-order predictors with a sparse structure can
model the different components of the audio signal. In Section 3,
we illustrate the LP methods used in our experiments and in Section
4 we provide the experimental results. Finally, Section 5 concludes
the paper.

2. TONAL AUDIO SIGNAL MODEL

We will only consider tonal audio signals, that is, signals having a
spectrum containing a finite number of dominant frequency compo-
nents at multiples of the fundamental frequencyf0 (usually found
in the range 100-1000 Hz). This model covers the majority of au-
dio signals. The performance of the different LP models will be
evaluated for three types of audio signals. We will consider true
monophonic and true polyphonic audio signals and synthetic audio
signals consisting of a sum of harmonic sinusoids.

2.1 Monophonic audio signals

In the monophonic signal model, it is assumed that all tonal compo-
nents are harmonically related to a single fundamental frequency:

x(n) =
M

∑
m=1

αmcos(mω0n+φm)+ r(n), n = 1, . . . ,L, (1)

where the time indexn has been normalized with respect to the sam-
pling periodTs = 1/ fs andω0 = 2π f0/ fs. The signal is modeled
with M sinusoids (with parametersαm, mω0, φm) and a noise term
r(n) that contains the nontonal components.

1The 2-norm minimization of the prediction error is equal, according to
the Parseval’s theorem [1], to maximizing the spectral flatness of the resid-
ual.
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Figure 1:Magnitude spectrum of the monophonic audio signal of Example 1.

Example 1. The monophonic audio fragment considered was ex-
tracted from a Bb clarinet sound recording in the McGill University
Master Samples (MUMS) collection ( fs = 44100Hz). The spectrum
of this N= 2048samples fragment, which corresponds to the sam-
ples 70001 to 72048 of the G4 note recording, is shown in Figure 1.
The fundamental frequency corresponds to f0 = 387.6 Hz and the
signal has M= 15 relevant harmonics.
Even though this signal can generally not be considered as output

of an AR process, significant considerations can be made. As it is
clear from Figure 1, the signal spectrum is made up by two com-
ponents: a comb-like structure where the peaks are located in the
multiples of the fundamental frequency and a smooth spectral en-
velope that resembles a low-pass filter, since the harmonic structure
is more prominent in the lower half of the spectrum. The comb-like
structure can be modeled by the filter:

Hp(z) =
1

P(z)
=

Gp

1− pz−P , (2)

whereP = T0/Ts (T0 = 1/ f0) andGp is a scaling factor2. The low-
pass component can be modeled by an all-pole filter:

H f (z) =
1

F(z)
=

Gf

1−∑Nf

k=1 fkz−k
. (3)

The cascade of the two filters corresponds the multiplication in the
z-domain of the their transfer functions:

Ha(z) =
1

A(z)
=

Gf Gp

F(z)P(z)
=

Gf Gp

1−∑K
k=1akz−k

=
Gf Gp

(1−∑Nf

k=1 fkz−k)(1− pz−P)
.

(4)

The signal can therefore be modeled with an orderK ≥ P+ Nf
sparse predictorA(z). The resulting predictor coefficient vector
a = {ak} of the high-order polynomialA(z) will therefore be highly
sparse. We will see how we can take this into account in the linear
prediction model and minimization criterion.

2.2 Synthetic audio signals consisting of a sum of harmonic si-
nusoids in white noise

Synthetic tonal audio signals are well suited for examining the mod-
eling properties of the high-order sparse LP models presented be-
low, since these provide exact knowledge of the fundamental fre-
quency f0 and the number of harmonics. The model is similar to

2If P is non-integer, a fractional-delay filterP(z) can be used [15].
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Figure 2: Magnitude spectrum of the polyphonic audio signal of Example 3.
In the smaller frame, we show a detail of the frequency range[0,800] Hz where
the first harmonics of each of the four monophonic signals are located ( f0,n =
{258.4,323.0,387.6,516.8}).

(1):

x(n) =
M

∑
m=1

αmcos(mω0n+φm)+ r(n), n = 1, . . . ,L, (5)

except that the noise termr(n) will be white noise, therefore not
containing low-power harmonics.
Example 2. We have built a synthetic signal of N= 2048samples
with M = 15 tonal components and random, uniformly distributed
amplitudes (αm ∈ (0,1]) and phases (φm ∈ [0,2π)). The radial
fundamental frequency was chosen to beω0 = 2π/64, that is, at
fs = 44.1 kHz, f0 = 689.1 Hz. The pitch period T0 being equal to
an integer number of sampling periods (T0 = 64Ts) will clearly il-
lustrate the effects of the pitch predictor.
In this case, we can also make considerations similar to those made
for the monophonic case. The magnitude spectrum is similar to
the one in Figure 1, the main difference being the predominance
of the harmonic sinusoids over the rest of the spectrum. While the
comb-like behavior can still be modeled by a pitch predictorP(z),
the predictorF(z), used to model the smooth spectral envelope of
the signal, will now serve to enhance the frequencies where the har-
monics are located. In particular, the low-pass filter will exhibit a
sharper transition between the lower half of the spectrum and the
higher frequencies. This necessarily translates into a higher order
Nf for F(z).

2.3 Polyphonic audio signals

The polyphonic audio signals are a finite sum of monophonic sig-
nals:

x(n) =
M

∑
m=1

(
Qm

∑
q=1

αm,qcos(qω0,mn+φm,q))+ r(n),

n = 1, . . . ,L

(6)

whereω0,q represents the fundamental frequency of theq−th mono-
phonic signal.
Example 3. The polyphonic audio signal considered was generated
by adding four monophonic piano sounds from the MUMS concert
hall Steinway recordings. The samples 2001 to 4048 of the C4, E4,
G4, and C5 note recordings were added to obtain a N= 2048C ma-
jor chord, plotted in Figures 2. The four fundamental frequencies
are f0,n = {258.4,323.0,387.6,516.8} Hz, and each of the mono-
phonic components has 7 relevant harmonics.
Linear prediction of polyphonic audio signals is the most challeng-

ing case. It is also the most significant one, since audio signals are
usually an ensemble of different sources with different fundamental



frequencies. The same reasoning we have followed for the case of
monophonic audio signals can be used for polyphonic signals with
some important differences. The smooth spectral envelope is clearly
similar to the monophonic one, therefore requiring a low-order pre-
dictor F(z) to model it. The substantial difference comes from the
modeling of the sum of the different comb-like components. In par-
ticular, the multipitch structure, differently from (2), will have to be
modeled by:

Hp(z) =
M

∑
i=1

Gpi

Pi(z)
=

M

∑
i=1

Gpi

1− piz−Pi
, (7)

which is a pole-zero filter. Since we are interested in an all-pole
filter this may translate into a defect in modeling. Nevertheless, in
our experimental analysis, we have noticed that, sincepi < 1, we
can write:

Hp(z) =
M

∑
i=1

Gpi

1− piz−Pi
≈

Gp

∏M
i=1(1− piz−Pi )

. (8)

This simplification seems far fetched and obviously requires some
further analysis. Nevertheless, we will show it holds quite well in
modeling the harmonic behavior. Just as in the monophonic case,
also a low-order all-pole model (3) can be used to model the enve-
lope. The high-order sparse predictor resulting from the cascade of
the two contributions will still be sparse:

Ha(z) ≈
1

A(z)
=

Gf Gp

F(z)P(z)
=

Gf Gp

1−∑K
k=1akz−k

=
Gf Gp

(1−∑Nf

k=1 fkz−k)(∏M
i=1(1− piz−Pi ))

.

(9)

The order of the high-order sparse predictorA(z) will be K ≥∑i Pi +
Nf in order to accommodate all the cross terms.

3. LINEAR PREDICTION IN AUDIO PROCESSING

The estimation problems considered in this paper are based on the
following autoregressive (AR) model, where a signal samplex(n) is
written as a linear combination of past samples:

x(n) =
K

∑
k=1

akx(n−k)+e(n). (10)

Here,{ak} are the prediction coefficients ande(n) is the excitation
of the corresponding AR filter, also referred to as the prediction er-
ror. We consider the optimization problem associated with finding
the prediction coefficient vectora ∈ R

K from a set of observed real
samplesx(n) for n = 1, . . . ,N so that the prediction error is mini-
mized [16]. This corresponds to the following minimization prob-
lem:

min
a

‖x−Xa‖p
p + γ‖a‖k

k, (11)

where

x =







x(N1)
...

x(N2)






,X =







x(N1−1) · · · x(N1−K)
...

...
x(N2−1) · · · x(N2−K)







and ‖ · ‖p is the p-norm defined as‖x‖p = (∑N
n=1 |x(n)|p)

1
p for

p≥ 1. The starting and ending pointsN1 andN2 can be chosen in
various ways by assumingx(n) = 0 for n < 1 andn > N. In this pa-
per we will use the most common choice ofN1 = 1 andN2 = N+K,
which is equivalent, whenp = 2 andγ = 0, to theautocorrelation
method:

â = argmin
a

‖x−Xa‖2
2 = (XT

X)−1
X

T
x, (12)

whereR = X
T
X is the autocorrelation matrix (whenN1 = 1 and

N2 = N+K) [17].

3.1 High-order LP modeling

It is well known that a signal composed ofM sinusoids can be mod-
eled exactly using an autoregressive moving average model, i.e.,
ARMA(2M,2M) model. This model can be arbitrarily closely ap-
proximated with an AR model, provided that the model orderK
is chosen large enough [18]. We will consider for all our audio
segments aK = 1024 order predictor, solution of the 2-norm min-
imization problem (12). The general goal of the high-order model
is to maximize the spectral flatness of the residual. However, the
all-pole model does not provide hints for factorization, as it does
not exploits the harmonicity properties of the signal.

3.2 Pitch prediction

A monophonic signal with a pitch periodT0 corresponding to an
integer number of sampling periodsTs can be perfectly predicted
using the one-tap pitch predictor in Eq. (2). Obviously, the pitch
period will generally not be an integer multiple of the sampling pe-
riod, such that the use of a multi-tap pitch predictor is required for
interpolation, or a fractional-delay filter should be used. The draw-
back with employing only a pitch predictor is that this creates an
extremely non-smooth residual signal by also attempting to cancel
harmonic frequencies which are not present in the input signal. For
these reasons, in this paper we will use a 3-tap pitch predictor [19],
efficient in modeling the decreasing comb-like structure of the sig-
nals analyzed.

The pitch prediction model is the only prediction model in
which the harmonicity property is exploited. The underlying sig-
nal model of the monophonic audio signal in (1) is harmonic, while
the polyphonic signal model in (6) is not. Therefore, while perform-
ing accurately for the monophonic signal, the pitch predictor fails to
recover the different pitch components in the polyphonic audio. In
particular, we have observed, that its estimation of the fundamental
frequencyf0 = 1/T0 is similar to a weighted average of the different
fundamental frequenciesf0,n of the underlying model.

3.3 High-order sparse LP modeling

Considering the two signal models we have introduced for the
monophonic and synthetic audio (4) and for the polyphonic audio
(9), we use the minimization problem in (11) to find the LP coeffi-
cients imposingk = 0. In this way, sparsity of the high-order pre-
dictor is taken into consideration directly in the minimization prob-
lem. The operator‖ · ‖0 represents the so-called 0-norm, i.e., the
cardinality of the vector. A relaxation of this non-convex problem
is obtained by approximating the 0-norm with the more tractable 1-
norm or by the iteratively reweighted 1-norm, bringing the solution
closer to the 0-norm [13]. In this paper we will limit the analysis
to the 1-norm. The regularization termγ is then clearly related to
thea priori knowledge that we have on the coefficients vector{ak}
or, in other terms, to how sparse{ak} is. There are many ways to
chooseγ. To generate preliminary results, we will consider it fixed
(γ = 0.1). The order of the predictor isK = 1024. The choice of
p is also non-trivial. Forp = 2 we will obtain a Gaussian residual,
consistent with the equivalent i.i.d. Gaussian maximum likelihood
approach to determine the coefficients. The casep = 1 is proba-
bly more interesting: seeing this as a convex relaxation of the 0-
norm, the residual will be alsosparse, providing interesting coding
properties that will be subject to further analysis. The minimization
problem considered used is then:

â = argmin
a

‖x−Xa‖1 + γ‖a‖1. (13)

The high-order LP in (12) does not rely on harmonicity, while the
pitch predictor relies basically only on harmonicity thus greatly
simplifying the calculations. The high-order sparse LP positions
itself somewhere in between these two approaches, providing sig-
nificant modeling properties similar to (12) but parametrizing the
signal in a more sophisticated way by taking into account the dif-
ferent components of the signal. Furthermore, when the orderK
approachesN/2 in (12), a number of spurious spectral peaks start
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Figure 3: High-order 2-norm LP (HOLP, above) and high-order sparse LP (HOS-
pLP, below) for a monophonic audio signal. A detail of the coefficients of order 105-125
is shown in the frame. The number of nonzero samples in the sparsepredictor is 25.

to appear. This effects can be traced back to the ill-conditioning
of the normal equations(XT

X)−1
X

T
x and in particular to the ob-

servation matrixX with highly correlated rows when sinusoids are
present in the data [20]. The sparsity of the predictor, helps reduc-
ing the ill-conditioning basically applying an “automatic” pruning
of the rows of the observation matrix without the necessarya priori
knowledge used, for example, in [21]. Indeed, the inclusion of the
regularization term in (13) can also be seen as a general method for
solving ill-posed problems [22].

4. EXPERIMENTAL ANALYSIS

4.1 Spectral modeling

In this section we will compare the use of high-order sparse LP with
the conventional high-order 2-norm LP. The comparison is done for
the audio signals introduced in Section 1 (Example 1-3). The first
Nf coefficients belonging to the low-pass filter are chosen using a
model order selection criterion [13].

4.1.1 Monophonic audio signal

The frequency response of the filters is shown in Figure 4 while the
two predictors are shown in Figure 3. It is clear that the predictor
is an accurate model of the two expected contributions:P(z) and
F(z). In particular the convolutive term is clustered around the inte-
ger pitch delay corresponding to the inverse of the fundamental fre-
quency and the peak is exactly located inP= ⌈ fs/ f0⌋= 113 (where
fs = 387.6 Hz). Remarkably, the shape resembles the fractional-
delay interpolation filter [23]. The combination of the two con-
tributions models very accurately the comb-like structure and the
low-pass behavior (Fig. 4). A 4th order polynomial was enough
to model the low-pass behavior, this corresponds to the first four
samples of the sparse prediction vector. It is also clear that the or-
der K = 1024 is excessive, an orderK ≥ P+ Nf whereNf ≈ 4
and P = fs/ f0 would have been sufficient. A final word should
be spent regarding the sparsity of the vector. The signal, having
M = 15 relevant harmonics, could be modeled accurately using an
ARMA(30,30) model. It is clear that achieving similar performance
with just 25 nonzero samples is an important result that can be ex-
ploited in coding applications.

4.1.2 Synthetic sum of sinusoids

Similar considerations can be made for the synthetic audio signal.
A 10th order polynomial models the envelope enhancing the fre-
quency present in the first half of the spectrum. The pitch predictor
modelsexactlythe comb like structure since the pitch periodT0 is
equal to an integer number of sampling periods (T0 = 64Ts). An ex-
ample of the modeling behavior of the predictor is shown in Figure
5. For the sake of brevity the predictor structure is not shown.
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Figure 4:Monophonic audio signal. Frequency response for the all-pole high-order
2-norm LP (HOLP), high-order sparse LP (HOSpLP) and the 4th order smooth spec-
tral envelope (ENV). A detail of the first nine harmonics and the predictors modeling
behavior is shown in the smaller frame.
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Figure 5: Synthetic sum of sinusoids. Frequency response for the all-pole high-
order 2-norm LP (HOLP), high-order sparse LP (HOSpLP) and the 10th order smooth
spectral envelope (ENV). A detail of the first two harmonics and the predictors behavior
is shown in the smaller frame.

4.1.3 Polyphonic audio signal

The frequency response of the filters is shown in Figure 6 while the
two predictors are shown in Figure 7. The predictor is less sparse
than in the monophonic case, taking into consideration the different
multipitch components. Furthermore, we notice that the approxi-
mation we have performed in (9), holds quite well and the predictor
seems to model accurately the whole sum of different harmonics
coming from the different signals. The only drawback seems the
over-emphasis of the envelope in modeling the low-pass behavior
that we have not observed in the other cases. This will be subject
to further analysis since at this early point it is difficult to provide
an explanation. In this case also the orderK = 1024 is excessive:
recalling thatK ≥ ∑i Pi +Nf , the order should be a little higher than
500. Moreover, the number of nonzero samples in the sparse predic-
tor is 53, which is considerably less than the number of coefficients
of an ARMA(56,56) model (sum of four signal withM = 7 relevant
harmonics each).

4.2 Spectral Flatness Performance

The spectral flatness measure (SFM) of the LP residual [18] in dB
is a negative real number, with SFM= 0 dB corresponding to a flat
spectrum. In Table 1 we describe the∆SFM’s, differences in spec-
tral flatness, between the original audio signals (monophonic and
polyphonic) and its residual provided by the three methods pre-
sented in Section 3. It can clearly be seen that high-order 2-norm
minimization certainly provides a higher spectral flatness (as ex-
pected) although with a highly dense predictor. The 3-tap pitch-
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pLP, below) for polyphonic audio signal. The number of nonzero samples in the sparse
predictor is 53.

predictor, while performing with a certain degree of accuracy in the
monophonic case, fails to model the multipitch behavior of the un-
derlying signal structure in the polyphonic case. The high-order
sparse LP offers almost the same performance as the high-order 2-
norm with only 1/100th of the taps necessary. As for the poly-
phonic case, we notice a more significant difference in performance
between sparse LP and 2-norm LP. This is mostly due to the sim-
plification of the pole-zero model structure represented only by the
sparse LP and the over-emphasis of the low-pass spectral character-
istic in the higher frequency range.

5. CONCLUSIONS

The use of high-order sparse LP in audio processing seems quite
promising. In particular, the different components of the audio sig-
nal (the spiky harmonics located on the lower half of the spectrum
and the low-pass overall behavior of the envelope) are modeled
efficiently by the high-order predictor. Furthermore, while reach-
ing spectral flattening performances comparable with high-order 2-
norm LP, the high-order sparse LP only requires few nonzero com-
ponents, offering important hints for coding. In this regard, we
should notice that the use of 1-norm residual minimization provides
also asparseresidual rather than a minimum variance one, arguably
related to more efficient coding strategies. Although the frequency
behavior corresponding to the 1-norm minimization is unknown, the
numerical results obtained clearly show potential advantages of the
sparse formulation for spectral modeling. The results presented also
make the sparse LP modeling promising for coding applications.
This, and other questions left open, such as stability and complexity
will be subject of our future work.

METHOD ∆SFMmono ∆SFMpoly

HOLP 35.41 dB 37.02 dB
PP 24.37 dB 17.03 dB

HOSpLP 34.59 dB 32.43 dB

Table 1: Difference in spectral flatness between the original audio signals (mono-
phonic and polyphonic) and their residuals for the three methods presented in Section
3: high-order 2-norm LP (HOLP), 3-tap pitch predictor (PP) and high-order sparse
LP (HOSpLP).

REFERENCES

[1] J. Makhoul, “Linear prediction: a tutorial review”,Proc. IEEE, vol. 63(4),
pp. 561–580, 1975.

[2] J. H. L. Hansen, J. G. Proakis, and J. R. Deller, Jr.,Discrete-time processing of
speech signals, Prentice-Hall, 1987.

[3] M. G. Christensen and A. Jakobsson,Multi-pitch estimation, Synthesis Lectures
on Speech and Audio Processing, Morgan & Claypool.

[4] K. Brandenburg and G. Stoll, “The ISO-MPEG-1 audio: A generic standard for
coding of high-quality digital audio,”Journal of the Audio Engineering Society,
vol. 42, no. 10, pp. 780–792, 1994.

[5] M. R. Schroeder, “Linear prediction, extremal entropy and prior information in
speech signal analysis and synthesis,”Speech Communication, vol. 1, no. 1, pp. 9–
20, 1982.
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