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Introduction

Linear Prediction of Speech Signals

Arguably one of the most successful tools for the analysis and
coding of speech signals.

Analysis: correspondence with modeling the speech production
process.

Coding: interesting attributes like low delay, scalability and, in
general, low complexity.
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Introduction

Linear Prediction of Audio Signals

LP modeling is definitely less popular in audio processing.

Analysis: the predictor does not necessarily model any physical
mechanism that generated the audio signal (ensemble of different
sources).

Coding: general difficulties in the accurate parametrization of
audio signals.

These shortcomings have led the way to a net preference for
transform-based audio coders that exploit perceptual models of
human hearing.
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Introduction

Motivations

The all-pole model of the LP filter is generally a quite adequate
tool to model the spectral peaks which play a dominant role in
perception.

Properties like low delay, scalability and low complexity make the
extension of LP to audio coding also appealing.

In our recent work, we have shown the benefits of using
high-order sparse linear predictors to model the spectrum of
voiced speech signals (envelope+harmonics).

We propose an extension of this work in the case of tonal audio
signals.
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Tonal Audio Signal Model

Tonal Audio Signal Model

Spectrum containing a finite number of dominant frequency
components:

x(n) =
M∑

m=1

αm cos(ωmn + φm) + r(n), n = 1, . . . , L,

r(n) contains the nontonal components.

We will consider fs = 44100 Hz. n normalized with respect to the
sampling period Ts = 1/fs.
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Tonal Audio Signal Model Monophonic Audio Signals

Monophonic Audio Signals

It is assumed that all tonal components are harmonically related to
a single fundamental frequency f0:

x(n) =
M∑

m=1

αm cos(mω0n + φm) + r(n), n = 1, . . . , L.
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Magnitude spectrum of a monophonic audio signal with f0 = 387.6 Hz.
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Tonal Audio Signal Model Monophonic Audio Signals

All-Pole Modeling of Monophonic Audio Signals

Signal spectrum is made up by two components:
a comb-like structure:

Hp(z) =
Gp

P(z)
=

Gp

1− pz−P ;

a smooth spectral envelope with low-pass characteristics:

Hf (z) =
Gf

F (z)
=

Gf

1−
∑Nf

k=1 fk z−k
.

The cascade of the two filters corresponds the multiplication in the
z-domain of the their transfer functions:

Ha(z) = Hp(z)Hf (z) =
Gf Gp

(1−
∑Nf

k=1 fkz−k )(1− pz−P)
.

The signal can therefore be modeled with an order K ≥ P + Nf
sparse all-pole filter A(z) (1/Ha(z)).
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Tonal Audio Signal Model Polyphonic Audio Signals

Polyphonic Audio Signals

Finite sum of monophonic signals:

x(n) =
M∑

m=1

(

Qm∑

q=1

αm,q cos(qω0,mn + φm,q)) + r(n), n = 1, . . . , L.
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Magnitude spectrum of a polyphonic audio signal sum of four monophonic signals

with (f0,n = {258.4, 323.0, 387.6, 516.8}).
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Tonal Audio Signal Model Polyphonic Audio Signals

All-Pole Modeling of Polyphonic Audio Signals

Presence of a smooth spectral envelope like in the monophonic
case.
The harmonics have now a multi-pitch structure:

Hp(z) =

M∑

i=1

Gpi

Pi(z)
=

M∑

i=1

Gpi

1− piz−Pi
,

that can be approximated by:

Hp(z) =
M∑

i=1

Gpi

1− piz−Pi
≈

Gp∏M
i=1(1− piz−Pi )

.

The cascade can still be seen as a high-order sparse all-pole filter:

Ha(z) ≈
Gf Gp

(1−
∑Nf

k=1 fkz−k )(
∏M

i=1(1− piz−Pi ))
.
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Linear Predictive All-Pole Modeling in Audio Processing Fundamentals

Fundamentals

An audio sample x(n) is written as a linear combination of K past
samples:

x(n) =
K∑

k=1

akx(n − k) + e(n), 0 < n ≤ N.

In matrix form becomes:

x = Xa + e.

Generalized optimization framework:

â = min
a
‖x − Xa‖pp + γ‖a‖kk .
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Linear Predictive All-Pole Modeling in Audio Processing High-Order LP Modeling

High-Order LP Modeling

A signal composed of M sinusoids plus (white) noise can be
modeled exactly using an ARMA(2M,2M) model1.

This model can be arbitrarily closely approximated with an AR
model, provided that the model order K is chosen large enough 2.

When p = 2 and γ = 0:

â = arg min
a
‖x − Xa‖22 = (XT X)−1XT x,

where R = XT X is the autocorrelation matrix.

We will consider N = 2048 and K = 1024.

1Y. T. Chan, J. M. M. Lavoie, and J. B. Plant, “A parameter estimation approach to
estimation of frequencies in sinusoids,” IEEE Trans. ASSP, vol. 29, no. 2, pp. 214-219,
1981.

2S. M. Kay, “The effects of noise on the autoregressive spectral estimator,” IEEE
Trans. ASSP, vol. 27, no. 5, pp.478-485, 1979.
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Linear Predictive All-Pole Modeling in Audio Processing Pitch Prediction

Pitch Prediction

Only prediction model in which the harmonicity property is
exploited.

A monophonic signal with a pitch period T0 corresponding to an
integer number of sampling periods Ts can be perfectly predicted
using the one-tap pitch predictor.

We will use a 3-tap fractional pitch predictor, efficient in modeling
the decreasing comb-like structure of the signals analyzed:

P(z) = 1/Hp(z) = 1 +
1∑

i=−1

plz
−i−P .

Use of a fractional-delay interpolation filter for non-integer pitch
delay P.
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Linear Predictive All-Pole Modeling in Audio Processing High-Order Sparse LP

High-Order Sparse LP

Imposing sparsity constraints on the LP coefficients by relaxing
the cardinality constraint (0-norm← 1-norm):

â = arg min
a
‖x − Xa‖pp + γ‖a‖1.

We will consider N = 2048 and K = 1024.

p = 2 minimum variance approach, p = 1 encourages sparsity
also on the residual.
Meaning of γ‖a‖1:

related to the a priori knowledge of a (MAP approach) or how
sparse the predictor should be;
for K > N/3 the problem is ill-posed (X with highly correlated
columns), a sparse regularization on the coefficients “trims out” the
columns of a that are redundant for the estimate.

14 / 20



Experimental Analysis Monophonic Audio Signals

Spectral Modeling
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Monophonic audio signal. Frequency response for the all-pole high-order 2-norm LP (HOLP),

high-order sparse LP (HOSpLP) and the 4th order smooth spectral envelope (ENV).
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Experimental Analysis Monophonic Audio Signals

High-Order Sparse Predictor
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High-order 2-norm LP (HOLP, above) and high-order sparse LP (HOSpLP, below) for a mono-

phonic audio signal. The number of nonzero samples in the sparse predictor is 25. The coef-

ficients with highest magnitude are located around P = ⌈fs/f0⌋ = 113 (where fs = 387.6 Hz).

Harmonic components modeled similarly to the fractional delay interpolation filter.
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Experimental Analysis Polyphonic Audio Signals

Spectral Modeling
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Polyphonic audio signal. Frequency response for the all-pole high-order 2-norm LP (HOLP), high-

order sparse LP (HOSpLP) and the 12th order smooth spectral envelope (ENV). A detail of the

first four harmonics (each belonging to a different signal) and the predictors behavior is shown in

the smaller frame.
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Experimental Analysis Polyphonic Audio Signals

High-Order Sparse Predictor
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High-order 2-norm LP (HOLP, above) and high-order sparse LP (HOSpLP, below) for polyphonic

audio signal. The number of nonzero samples in the sparse predictor is 53. The predictor is less

sparse than in the monophonic case, taking into consideration the different multipitch components.
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Experimental Analysis Results

Spectral Flatness Performances

Difference in spectral flatness between the original audio signals and their
LP representations. The high-order sparse LP offers almost the same perfor-
mance as the high-order 2-norm with significantly less prediction coefficients.

METHOD ∆SFMmono ∆SFMpoly

HOLP 35.41 dB 37.02 dB
PP 24.37 dB 17.03 dB

HOSpLP 34.59 dB 32.43 dB
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Conclusions

Conclusions

The different components (envelope+harmonics) of the audio
signal are modeled efficiently by the high-order predictor.

While reaching spectral flattening performances comparable with
HOLP, the HOSpLP only requires only few nonzero coefficients.

HOLP does not rely on harmonicity, PP relies only on harmonicity
(unsuited for multipitch audio).

HOSpLP positions itself somewhere in between these two
approaches offering a more sophisticated parametric
representation.

Exploiting sparsity, HOSpLP seems to better take into account the
different harmonic components of the signal.
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