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ABSTRACT

Linear prediction of speech based on 1-norm minimization has al-
ready proved to be an interesting alternative to 2-norm minimiza-
tion. In particular, choosing the 1-norm as a convex relaxation of the
0-norm, the corresponding linear prediction model offers a sparser
residual better suited for coding applications. In this paper, we pro-
pose a new speech modeling technique based on reweighted 1-norm
minimization. The purpose of the reweighted scheme is to over-
come the mismatch between 0-norm minimization and 1-norm mini-
mization while keeping the problem solvable with convex estimation
tools. Experimental results prove the effectiveness of the reweighted
1-norm minimization, offering better coding properties compared to
1-norm minimization.

Index Terms— Linear prediction, 1-norm minimization, speech
analysis, speech coding.

1. INTRODUCTION

In Linear Predictive Coding of speech signals (LPC), the predic-
tion coefficients are typically obtained by minimizing the 2-norm
of the residual (the difference between the observed signal and the
predicted signal) [1]. The 2-norm minimization shapes the residual
into variables that exhibit Gaussian-like characteristics. However,
in order to reduce the information content of the residual and to al-
low for a low bit rate encoding, a sparse approximation of the resid-
ual is often used. This conceptual difference between a quasi-white
minimum variance residual and its approximated version creates a
mismatch that can raise the distortion significantly. In our recent
work, we have defined a new predictive framework that provides a
tighter coupling between the linear predictive analysis and the resid-
ual encoding by looking for a sparse residual rather than a minimum
variance one [2, 3]. Early encoding techniques such as Multi-Pulse
Excitation (MPE) [4] or Regular-Pulse Excitation (RPE) [5], have
shown to be more consistent with this kind of predictive framework
unlike, e.g., Code Excited LP (CELP) [6] that uses pseudo-random
sequences to encode the residual.

In our previous work we have used the 1-norm as a convex re-
laxation of the so-called 0-norm, the cardinality of a vector. The
0-norm, and more generally thep-norm with 0 ≤ p < 1, is not
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a proper norm and its minimization yields a combinatorial problem
(NP-hard). We therefore aim to “adjust” the error weighting differ-
ence between the 1-norm and the 0-norm keeping the feasibility of
the problem in polynomial time. To do so, in this paper we pro-
pose a new method for the estimation of the prediction filter based
on iteratively reweighted 1-norm minimization [7]. We will see how
this method, by enhancing the sparsity of the residual, yields a better
and simpler formulation of the coding problem, hence allowing for
a general improvement in performance.

The paper is organized as follows. In Section 2 we give the gen-
eral problem formulation of sparse linear prediction. In Section 3
we introduce the algorithms used to enhance sparsity in linear pre-
dictive coding and in Section 4 we provide a statistical interpretation.
In Section 5 and Section 6 we illustrate the effects of the algorithm
for analysis and coding of speech. Section 7 concludes the paper.

2. SPARSE LINEAR PREDICTION

The problem considered in this paper is based on the following Auto-
Regressive (AR) speech production model, where a sample of speech
x(n) is written as a linear combination ofK past samples:

x(n) =

K
∑

k=1

akx(n− k) + r(n), 0 < n ≤ N, (1)

where{ak} are the prediction coefficients andr(n) is the driving
noise process (commonly referred to as the prediction residual). The
speech production model (1) in matrix form becomes:

x = Xa + r (2)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






.

The prediction coefficient vectora ∈ R
K is found by minimizing

thep−norm of the residualr [8]:

â, r̂ = arg min
a

‖r‖pp, s.t. r = x−Xa; (3)

where‖ · ‖p is thep-norm. The starting and ending pointsN1 = 1
andN2 = N + K are chosen assuming thatx(n) = 0 for n < 1
andn > N [9]. Sparsity is often measured as the cardinality, i.e.,



Algorithm 1 Iteratively Reweighted 1-norm Minimization of the
Residual

Inputs: speech segmentx

Outputs: predictor̂ai, residual̂ri

i = 0, initial weightsWi=0 = I

while halting criterion falsedo
1. âi, r̂i← arg mina ‖W

i
r‖1 s.t. r = x−Xa

2. Wi+1 ← diag
(
∣

∣r̂
i
∣

∣ + ǫ
)

−1

3. i← i + 1
end while

the so-called 0-norm. Therefore, settingp = 0 in (3) means that
we aim to minimize the number of non-zero samples in the error
signal. Unfortunately this corresponds to a combinatorial problem
which generally cannot be solved in polynomial time. Instead of the
0-norm, we then use the more tractable 1-norm [2]:

â, r̂ = arg min
a

‖r‖1 s.t. r = x−Xa; (4)

An interesting alternative problem formulation is obtained when spar-
sity is also imposed on the predictor:

â, r̂ = arg min
a

‖r‖1 + γ‖a‖1, s.t. r = x−Xa; (5)

in this case the sparse structure of the predictor (in this case high
order) allows a joint estimation of a short-term and a long-term pre-
dictor [3, 10]. This optimization problem can be posed as a linear
programming problem and can be solved using an interior-point al-
gorithm [8].

3. ITERATIVELY REWEIGHTED 1-NORM
MINIMIZATION

Our general goal is to determine a linear predictor that yields a sparse
residual. As mentioned before, for0 ≤ p < 1, the problem cannot
be solved using convex optimization. To overcome this problem,
an iteratively reweighted 1-norm minimization may be used for esti-
matinga and enhancing the sparsity onr, while keeping the problem
solvable with convex tools [7]. The algorithm is shown in Algorithm
1. The parameterǫ > 0 is used to provide stability when a compo-
nent of r̂ goes to zero.ǫ does not need to be too small; as empiri-
cally demonstrated in [7], it should be in the order of the expected
nonzero magnitude ofr. It can be shown that‖r̂i+1‖1 ≤ ‖r̂

i‖1,
meaning that this is a descent algorithm [7]. The halting criterion
can therefore be chosen as either a maximum number of iterations
or as a convergence criterion.

When we impose sparsity both on the residual and on the pre-
dictor, as in (5), the algorithm is modified as shown in Algorithm
2. As mentioned before, the high order sparse predictor estimated in
(5) is found to show a structure similar to the convolution between
a short-term and a long-term predictor, usually estimated in two dif-
ferent stages. In previous approaches [3, 10], the predictor shows a
clear sparse structure but also some spurious components, i.e., small
components in the predictor that are irrelevant to our analysis. In
[3], we have used a model order selection criterion to locate the spu-
rious quasi-zero components in the predictor which are then put to
zero. The reweighted 1-norm minimization seems to be more effec-
tive in removing these spurious components, as the new predictor is
iteratively re-estimated, rather than just “cleaned up”.

Algorithm 2 Iteratively Reweighted 1-norm Minimization of Resid-
ual and Predictor

Inputs: speech segmentx

Outputs: predictor̂ai, residual̂ri

i = 0, initial weightsWi=0 = I andD
i=0 = I

while halting criterion falsedo
1. âi, r̂i← arg mina ‖W

i
r‖1 + γ‖Di

a‖1
s.t. r = x−Xa

2. Wi+1 ← diag
(
∣

∣r̂
i
∣

∣ + ǫ
)

−1

3. Di+1 ← diag
(
∣

∣â
i
∣

∣ + ǫ
)

−1

4. i← i + 1
end while

4. STATISTICAL INTERPRETATION

The linear prediction solution defined in (4) and (5) can be seen re-
spectively as theMaximum Likelihood(ML) andMaximum A Priori
(MAP) estimate of an AR process driven by a Laplacian noise se-
quencer. In the MAP approach, a prior ona as a Laplacian variable
is also imposed. The Laplacian distribution has already been con-
sidered to provide a more appropriate fitting for speech [12] than the
Gaussian distribution, due to the heavier tails that admit larger er-
rors in the residual. For the casep ≤ 1, the density functions will
have even heavier tails and a sharper slope near zero. In particular,
this means that the maximization will encourage small values to be-
come smaller while leaving unchange the larger values. The limit
case forp = 0 will have an infinitely sharp slope in zero and equally
weighted larger slopes. This will force the maximization to include
as many zeros as possible as they are infinitely weighted.

The mismatch between the 0-norm and the 1-norm minimization
that we are trying to compensate for, can be seen more clearly in
Figure 1, where larger coefficients are penalized more heavily by the
1-norm than small ones. In this sense, the 0-norm can be seen as
more “impartial” by penalizing every nonzero coefficient equally. It
is clear that if a very small value would be weighted as much as a
large value, the minimization process will try to eliminate the smaller
ones and enhance the larger ones.

This explains the choice of the weights as the inverse of the mag-
nitude of the residual. In fact, this weighting will balance the depen-
dence on the magnitude of the 1-norm, changing the cost function
and moving the problem towards the 0-norm minimization.

5. EXPERIMENTAL ANALYSIS

To illustrate the effects of the algorithm, we first analyze a segment
of stationary voiced speech. The reweighted 1-norm minimization
helps to reduce the emphasis on the outliers due to the pitch excita-
tion, as we can see clearly in Figure 2. The ability of easily spotting
the main components in the residual, as we shall see in the next sec-
tion, have a great impact on coding applications.

An even more interesting case, is the reweighted 1-norm mini-
mization of both residual and predictor. In this case, the use of the
high order predictor removes also the long-term redundancies, what
is left is almost just an impulse as shown in Figure 3. This basi-
cally means that all the information of the signal is transferred to
the predictor which also show a very clear sparse structure, similar
to the convolution between the coefficients of short-term and long-
term predictors. The examples were obtained analyzing the vowel
/a/ uttered by a female speaker usingN = 160, fs = 8 kHz and
orderK = 10 for Algorithm 1 andK = 110 for Algorithm 2. In
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Fig. 1. Comparison between cost functions forp ≤ 1. The 0-norm
can be seen as more “democratic” than any other norm by weighting
all the nonzero coefficients equally.

both casesǫ = 0.01. The choice of the regularization termγ is given
by theL-curve where a trade-off between the sparsity of the residual
and the sparsity of the predictor is found [11, 3]. Both algorithms
converge rapidly, three to five iteration are sufficient to reach a point
where‖r̂i+1‖1 ≈ ‖r̂

i‖1 and, in the joint case,‖âi+1‖1 ≈ ‖â
i‖1.

6. VALIDATION

To validate our method, we have analyzed about one hour of clean
speech coming from several different speakers with different charac-
teristics (gender, age, pitch, regional accent) taken from the TIMIT
database, re-sampled at 8 kHz. The frame length isN = 160 (20
ms). We will consider now the two cases, with the reweighted min-
imization of the residual and with the reweighted minimization of
both residual and predictor. The parameterǫ, used to avoid division
by zero, is chosen to beǫ = 0.01.

6.1. Reweighted Residual

In order to code the residual sequence when Algorithm 1 is used,
after the reweighted scheme we use an Analysis-by-Synthesis to op-
timize the amplitudes of theM = 20 largest pulses (therefore con-
straining the positions). The order of the predictor isK = 10, a
long-term predictor is not used for immediacy of the results. Our
method (MPE1r ) is compared with the classic MPE scheme where
the linear predictor is found with a 1-norm minimization (MPE1),
with a 2-norm minimization (MPE2r ) [4] and using a 2-norm re-
weighted minimization (MPE1r ) [13]. In the reweighted cases, five
iterations are done (enough to reach reasonable convergence). The
quantization process uses 20 bits to encode the predictor using 10
Line Spectral Frequencies using the procedure in [14], in the case
the filter is unstable the poles outside the unit circle are reflected in-
side of it. A 3 bits uniform quantizer that goes from the lowest to the
highest magnitude of the residual pulses is used to code the resid-
ual, 5 bits are used to code the lowest magnitude and 2 bits are used
to code the difference between lowest and highest magnitude. The
signs are coded with 1 bit per each pulse. We postpone the efficient
encoding of the positions to further investigation, for now we just
use the information content of the pulse location which islog2

(

160

10

)

bits. This produces a bit rate of 9500 bits/s. The results are shown in
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Fig. 2. Comparison between true 1-norm 10th order LP residual
(middle) and iteratively reweighted 1-norm LP residual (bottom) ac-
cording to Algorithm 1. The original voiced speech is shown on top.
Three iteration where performed, sufficient to reach convergence.
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Fig. 3. Residual and 110th order linear predictor at the convergence
of Algorithm 2 after three iterations. The speech segment analyzed
is the same as Figure 2.

Table 1. We would like to highlight that inMPE1r it is not neces-
sary to calculate the positions of the nonzero pulses are located (as it
is usually done in MPE coding), we simply exploit the information
coming out of the predictive analysis. We are then clearly moving
our problem towards a more synergistic way to code a signal.

6.2. Reweighted Residual and Predictor

The most interesting case is when both predictor and residual are
processed in the reweighted minimization. As shown in our previous
work [10], the high order predictor is split into the long-term and
short-term component through a simple deconvolution. The short-
term predictorAstp(z) will have orderNstp = 10 and the long term
predictor (pitch predictor)P (z) = 1− gpz−Tp will have order one.
The choice ofK = 110 in (5) means that we can cover accurately
pitch delays in the interval[Nstp + 1, K −Nstp − 1], including the
usual range for the pitch frequency[70Hz, 500Hz].

In the coding process, we can make a distinction between the
voiced case and the unvoiced case. In particular, when the pitch gain
gp is lower than a certain threshold, we will not code the long term



Table 1. Comparison between the MPE residual estimation methods
in terms of Segmental SNR and Mean Opinion Score (PESQ evalu-
ation). A 95% confidence intervals is given for each value.

METHOD SSNR MOS

MPE1r 20.9±1.9 3.24±0.03
MPE1 20.0±3.2 3.20±0.12
MPE2r 19.3±2.9 3.17±0.10
MPE2 18.5±2.1 3.17±0.22

informations and we will allocate more pulses for the residual, usu-
ally less sparse than the voiced residual. In our experimental analysis
we have set the threshold toTHgp

= 0.05. M = 5 andM = 10
pulses are used respectively in the voiced and unvoiced case. Just
like we did in Section 6.1, the positions of theM pulses of largest
magnitude are used in the Analysis-by-Synthesis to define the only
nonzero samples. The quantization procedure is also the same as in
Section 6.1, except for the quantization ofTp andgp for which we
use respectively 7 and 6 bits. This produces a bit rate of 5450 bit/s in
the voiced case and 4900 bit/s in the unvoiced case, and an approx-
imate average bit rate of 5175 bit/s. We will compare our method
(J11r) with the scheme without the reweighting (J11) presented in
Equation (5) and the method where the significant coefficients are
chosen using a model order selection procedure [3] (J11os), we also
compared the method with both reweighting and model order selec-
tion. In the reweighting cases, only three iteration were needed to
reach convergence in all the analyzed frames. The results shown in
Table 2, demonstrate a net improvement over the traditional method
(J11) and a slight improvement also over (J11os), without the costly
model order selection procedure. The combinations of both methods
(J11r+os), shows the best results. This is due to the combination of
the reweighting procedure that “concentrates” the nonzero parts in
the high order polynomial with the model order selection that “spots”
the important ones.

Table 2. Comparison between the coding methods with joint estima-
tion of residual and predictor in terms of Segmental SNR and Mean
Opinion Score (PESQ evaluation). A 95% confidence intervals is
given for each value.

METHOD SSNR MOS

J11r+os 27.9±0.9 3.59±0.02
J11r 25.3±1.3 3.43±0.03
J11os 24.7±1.0 3.40±0.09
J11 23.9±1.9 3.22±0.09

7. CONCLUSIONS

In this paper, we have proposed a method to enhance sparsity in lin-
ear prediction based on the reweighted 1-norm error minimization.
With just few iterations, we were able to move the error minimiza-
tion criterion toward the 0-norm solution, showing general improve-
ments over conventional 1-norm minimization in coding purposes.
Statistical reasons supporting the new criterion have also been pro-
vided. A concluding remark would also be that in the cases ana-
lyzed, we have no prior knowledge of where the residual should be

nonzero. This brings the bit allocated to describe the position of few
samples to significantly increase the rate. An interesting case, that
would subject to further analysis would be tostructurethe reweight-
ing process by imposing where we would like to have the nonzero
pulses located. First experiments have shown to be promising and
will be subject of our future work.
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