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1 Introduction

•Linear prediction of speech based on 1-norm
minimization has already proved to be an in-
teresting alternative to 2-norm minimization.

•Choosing the 1-norm as a convex relaxation
of the 0-norm, the corresponding linear pre-
diction model offers a sparser residual better
suited for coding applications.

•Purpose of this paper is to overcome the mis-
match between 0-norm minimization and 1-
norm minimization while keeping the problem
solvable with convex optimization tools.

•Experimental results prove the effectiveness of
the reweighted 1-norm minimization, offering
better coding properties compared to 1-norm
minimization.

2 Sparse Linear Prediction

•The problem considered in this paper is based
on the following Auto-Regressive (AR) speech
production model, where a sample of speech
x(n) is written as a linear combination of K
past samples:

x(n) =
K
∑

k=1

akx(n− k) + r(n), 0 < n ≤ N,

where {ak} are the prediction coefficients and
r(n) is the driving noise process (commonly
referred to as the prediction residual).

•The prediction coefficient vector a (order K)
is found by minimizing the 1−norm of the
residual r:

â, r̂ = arg min
a
‖r‖1 s.t. r = x−Xa.

•An interesting alternative problem formula-
tion is obtained when sparsity is also imposed
on the predictor:

â, r̂ = arg min
a
‖r‖1+γ‖a‖1, s.t. r = x−Xa;

in this case the sparse structure of the pre-
dictor (in this case high order) allows a joint
estimation of a short-term and a long-term
predictor.

3 Reweighted 1-norm

• Iteratively Reweighted 1-norm Minimization of the Resid-

ual

Inputs: speech segment x

Outputs: predictor â
i, residual r̂

i

i = 0, initial weights W
i=0 = I

while halting criterion false do

1. â
i, r̂i ← arg mina ‖W

i
r‖1

2. W
i+1← diag

(∣

∣r̂
i
∣

∣ + ǫ
)−1

3. i← i + 1

• Iteratively Reweighted 1-norm Minimization of Residual

and Predictor

Inputs: speech segment x

Outputs: predictor â
i, residual r̂

i

i = 0, initial weights W
i=0 = I and D

i=0 = I

while halting criterion false do

1. â
i, r̂i ← arg mina ‖W

i
r‖1 + γ‖Di

a‖1
2. W

i+1← diag
(∣

∣r̂
i
∣

∣ + ǫ
)−1

3. D
i+1← diag

(∣

∣â
i
∣

∣ + ǫ
)−1

4. i← i + 1

•The reweighting process will balance the de-
pendence on the magnitude of the 1-norm,
changing the cost function and moving the
problem towards the 0-norm minimization.

•The weights are chosen as the inverse of the
magnitude of the residual.

• ǫ > 0 is used to provide stability when a com-
ponent of r̂ goes to zero.

•‖r̂i+1‖1 ≤ ‖r̂
i‖1

•The halting criterion can be chosen as either
a maximum number of iterations or as a con-
vergence criterion.
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Comparison between cost functions for p ≤ 1. The 0-norm can be seen
as more “democratic” than any other norm by weighting all the nonzero
coefficients equally.

4 Experiments
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Comparison between true 1-norm 10th order LP residual (middle) and itera-
tively reweighted 1-norm LP residual (bottom). The original voiced speech is
shown on top. Three iteration where performed, sufficient to reach conver-
gence
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Residual and 110th order linear predictor at the convergence after three it-
erations. As it is clear, all the information of the speech signal is transferred
to the predictor which also show a very clear sparse structure, similar to the
convolution between the coefficients of short-term and long-term predictors.

5 Validation

•The residual sequence is coded with sparse
multipulse techniques (M = 20) after the
reweighted scheme. The frame length is N =
160 (20 ms). The prediction order is K = 10.

• In MPE1r it is not necessary to calculate the
positions of the nonzero pulses are located (as
it is usually done in MPE coding), we simply
exploit the information coming out of the pre-
dictive analysis. We are then clearly moving
our problem towards a more synergistic way
to code a signal.

METHOD SSNR MOS

MPE1r 20.9±1.9 3.24±0.03

MPE1 20.0±3.2 3.20±0.12

MPE2r 19.3±2.9 3.17±0.10

MPE2 18.5±2.1 3.17±0.22

Comparison between the MPE residual estimation methods in terms of
Segmental SNR and Mean Opinion Score (PESQ evaluation). A 95% con-
fidence intervals is given for each value. Each signal is coded with 9500
bits/s.

•When both predictor and residual are pro-
cessed in the reweighted minimization, we can
further reduce the number of nonzero samples
in the MPE process (M = 5 and M = 10
pulses respectively in the voiced and unvoiced
case).

METHOD SSNR MOS

J11r+os 27.9±0.9 3.59±0.02

J11r 25.3±1.3 3.43±0.03

J11os 24.7±1.0 3.40±0.09

J11 23.9±1.9 3.22±0.09

Comparison between the coding methods with joint estimation of residual
and predictor in terms of Segmental SNR and Mean Opinion Score (PESQ
evaluation). A 95% confidence intervals is given for each value. The ap-
proximate average bit rate is 5175 bit/s.

6 Discussion

•With just few iterations, we were able to
move the error minimization criterion toward
the 0-norm solution, showing general improve-
ments over conventional 1-norm minimization
in coding purposes.

•We have no prior knowledge of where the
residual should be nonzero. This brings the
bit allocated to describe the position of few
samples to significantly increase the rate.

•An interesting case would be to structure the
reweighting process by imposing where we
would like to have the nonzero pulses located,
as in RPE encoding scheme.
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