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Retrieving Sparse Patterns Using a Compressed
Sensing Framework: Applications to Speech
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Abstract—Encouraged by the promising application of com-
pressed sensing in signal compression, we investigate its formu-
lation and application in the context of speech coding based on
sparse linear prediction. In particular, a compressed sensing
method can be devised to compute a sparse approximation of
speech in the residual domain when sparse linear prediction is in-
volved. We compare the method of computing a sparse prediction
residual with the optimal technique based on an exhaustive search
of the possible nonzero locations and the well known Multi-Pulse
Excitation, the first encoding technique to introduce the sparsity
concept in speech coding. Experimental results demonstrate the
potential of compressed sensing in speech coding techniques,
offering high perceptual quality with a very sparse approximated
prediction residual.

Index Terms—Compressive sampling, compressed sensing,
sparse approximation, speech analysis, speech coding.

1. INTRODUCTION

INDING a sparse approximation of the prediction residual
F in Linear Predictive Coding (LPC) has been an active field
of research for the past 30 years. A significant result was found
with the introduction of the Multi-Pulse Excitation (MPE) tech-
nique [1] providing a suboptimal solution to a problem of com-
binatorial nature. The purpose of this scheme is to find a predic-
tion residual approximation with a minimum number of nonzero
elements, still offering a high perceptual quality. MPE quickly
evolved to Code Excited Linear Prediction (CELP), where the
best residual approximation is selected from a codebook pop-
ulated with pseudo-random white sequences. This choice was
motivated by the statistic of the residual, ideally a sequence of
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i.i.d. Gaussian samples (due to the use of 2-norm minimization
in the LP analysis).

In our recent work, we have utilized recent developments
in convex optimization to define a new synergistic predictive
framework that aims for a sparse prediction residual rather than
the usual minimum variance residual [2], [3]. We have also
shown that MPE techniques are better suited in this framework
for finding a sparse approximation of the residual. Considering
that MPE is itself a suboptimal approach to modeling prediction
residuals, a natural question is whether one can improve upon
the performance of MPE by moving towards a more optimal
approach of capturing prediction residuals without increasing
complexity. Recent work on sparse solutions to linear inverse
problems, commonly referred to as compressive sensing (CS),
should be able to provide methods for tackling such issues [4].
While CS has been mainly applied to signals such as images
with a natural underlying sparse structure, CS methods also
seem to be appropriate for signals that are almost sparse, or for
which sparsity is imposed [5]. Consequently, one expects that
CS methods can be utilized to estimate a sparse residual within
a suitably modeled predictive coding framework. In [6] the au-
thors examined the use of CS within speech coding, resulting in
a restricted approach in which a codebook of impulse response
vectors is utilized in tandem with an orthonormal basis. In [7],
one can find a CS formulation of sinusoidal coding of speech.

In this paper, we examine CS within predictive coding of
speech. In contrast to the work in [6], we do not utilize a code-
book of impulse response vectors, and instead examine the more
familiar approach to predictive coding in which the impulse re-
sponse matrix is specified. In particular, we demonstrate how
a CS formulation utilizing the Least Absolute Shrinkage and
Selection Operator (LASSO [8]) method allows for a tradeoff
between the sparsity of the residual and the waveform approxi-
mation error. Moreover, this CS approach leads to a reduction in
complexity in obtaining sparse residuals, moving closer to the
optimal 0-norm solution while keeping the problem tractable
through convex optimization tools and projection onto a random
basis. In addition, this paper also shows the successful exten-
sion of the CS formulation to the case where the basis is not
orthogonal, a case which is rarely examined in the CS litera-
ture. In simulations, the CS-based predictive coding approach
provides better speech quality than that of MPE-based methods
at roughly the same complexity.

The paper is structured as follows. In Section II we briefly
review the general CS theory. In Section III we introduce the
CS formulation for the case of speech coding, providing some
significant results in Section IV. Section V will then conclude
our work.
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II. COMPRESSED SENSING PRINCIPLES

Compressed sensing (CS) has arguably represented a shift in
paradigm in the way we acquire, process and reconstruct sig-
nals. In essence, CS exploits prior knowledge about the spar-
sity of a signal x in a linear transform domain in order to de-
velop efficient sampling and reconstruction. Let x € RY be
the signal for which we would like to find a sparse representa-
tion and ¥ = {¢1,...,¥nN} be the orthonormal basis (or or-
thobasis). Considering the expansion of x onto the basis ¥ as

N
x =V¥r = Zrﬂ/;i (D
i=1
where r is the vector of the scalar coefficients of x in the or-
thobasis. The assumption of sparsity means that only K coef-
ficients, with K < N, of r are significant to represent x. In
particular, x is said to be K-sparse if only K nonzero samples
in r are sufficient to represent x exactly.
In CS we do not observe the K-sparse signal x directly, in-
stead we record M < N nonadaptive linear measurements:

N
y=® =) ¢n(i)z(i), 1<m<M<N (2
1=1

where ® € RM*¥ is a measurement matrix made up of random
orthobasis vectors. CS theory states that we can reconstruct x
(or, equivalently r) accurately from y if ® and ¥ are incoherent
(u(¥,®) =~ 1, where u(¥,®) is the coherence measure, the
largest correlation between any two columns of the basis ma-
trix and the random matrix). This property is easily achievable
when the entries of the random matrix ® are i.i.d. Gaussian vari-
ables. In this case, the recovery works with high probability if
M is in the order of K log(N) [9]. If the incoherence holds, the
following linear program gives an accurate reconstruction with
very high probability:

min
reRN

rl|; st. y=9®Ur 3)
where ||r||; = (Eﬁzl |r(n)]) is the 1-norm and it is used as a
convex relaxation of the so-called 0-norm, the cardinality of a
vector.

A very interesting property of CS is that if x is not K -sparse
(or, not exactly K -sparse), the quality of the recovered signal
r (or, equivalently x) is as good as if we were to select only
the K largest values before the calculations, and measure them
directly. To quote [9]:

the reconstruction is nearly as good as that provided by
an oracle which, with full and perfect knowledge about r,
would extract the K most significant pieces of information
for us.
This important property, stated elegantly in [10], extends the use
of CS to all kinds of signals for which we would like to find a
sparse representation. In particular, it allows us to apply CS to
signals where K is not defined by the signal x but by our “need”
for sparsity, therefore allowing an approximation error:

e=y— ®Ur. 4)

The formulation in (4) will then become:

ly — ®¥r||3 < e 5)

min ||r|l; s.t.
reRN
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where ¢ is the bound for the approximation error. This inequality
constrained convex problem can also be rewritten using La-
grange multipliers as:

wmin [le] +ly — Sr|3 ©®
recRN

This latest formulation, also called Least Absolute Shrinkage
and Selection Operator (LASSO [8]), shows more clearly the
robustness of CS to signals that are not necessarily sparse and
in particular, the tradeoff between the sparsity of r and the ap-
proximation error e(y,r).

Summarizing, if we wish to perform CS, two main ingredi-
ents are needed: a domain where the analyzed signal is sparse
and the sparsity of this signal. The domain is found through a
linear transform while the level of sparsity can be either known
or assumed. In the next section we will see how can we define
the CS formulation in speech coding.

III. COMPRESSED SENSING FORMULATION
FOR SPEECH CODING

A. Definition of the Transform Domain

In speech coding, the transform domain where the represen-
tation is required to be sparse is the prediction residual. In our
previous work, we have indeed found very few nonzero samples
in the residual when sparse linear prediction is involved [2], [3].
Considering the simple case in which we would like to find a
linear predictor a of order P that provides a sparse residual, the
formulation becomes

a=arg min ||[x — Xal| @)
where
x(Ny) z(Ny — 1) z(Ny — P)
x=| : [, X=| s
x(N2) (N2 — 1) x2(N2 — P)
and || - ||1 is the l-norm. The start and end points N7 and No
can be chosen in various ways assuming that z(n) = 0 for

n < 1and n > N. An appropriate choice is N3 = 1 and
N5 = N + P (in the case of 2-norm minimization, this leads to
the autocorrelation and to the Yule-Walker equations). The more
tractable 1-norm is used as a linear programming relaxation of
the sparsity measure, just like in (4). Given a prediction filter a
the residual vector can be expressed as

r=Ax 8)

where A is the N x N matrix that performs the whitening of
the signal, constructed from the coefficients of the predictor a
of order P [11].

Equivalently, we can write

x=A"r=Hr ©)]

where H is the N x N inverse matrix of A and is commonly
referred to as the synthesis matrix [11] that maps the residual
representation to the original speech domain. In practice, this
inversion is not computed explicitly and H is constructed di-
rectly from the impulse response h of the all pole filter that cor-
responds to a. Furthermore, the usual approach is to have N + P
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columns in H bringing in the effects of I” samples of the residual
of the previous frame (the filter state/memory).

It is important to notice that the column vector r will be now
composed of N + P rows, but the first P elements belong to the
excitation of the previous speech frame and therefore are fixed
and do not affect the minimization process.

It is now clear that the basis vectors matrix is the synthesis
matrix ¥ = H. We can now write

K
X:Zrnihnw {TL177’L2,...77’LK}C{17...7N+P}.
=1

(10)
where h; represents the ¢-th column of the matrix H. The for-
mulation then becomes

# = arg min ||r||; + ~|ly — ®Hr|3 (11)
reRy
where y = ®x is the speech signal compressed through the
projection onto the random basis ® of dimension M x N. The
second term is now the 2-norm of the difference between the
original speech signal and the speech signal with the sparse rep-
resentation, projected onto the random basis. Assuming that

Iy — @Hr|3 = [|®(x — Hr)||3 ~ [|x — Hr|}3

the problem in (11) can now be seen as a tradeoff between
the sparsity in the residual vector and the accuracy of the new
speech representation x = Hf. To ensure simplicity in the pre-
ceding and following derivations, we have assumed that no per-
ceptual weighting is performed. The results can then be gener-
alized for an arbitrary weighting filter.

An important aspect that should be taken into consideration
is that, if the transformation matrix ® is not exactly orthogonal,
such as in the case of ® = H, the recovery is still possible, as
long as the incoherence holds (u(®, H) ~ 1) [4].

(12)

B. Defining the Level of Sparsity

CS theory states that for a vector x of length N with sparsity
level K (K < N), M = O(Klog(N)) random linear pro-
jections of x are sufficient to robustly (i.e., with overwhelming
probability) recover x in polynomial time. With a proper
random basis, so that ® and H are incoherent (u(®, H) = 1)
[12], as a rule of thumb, four times as many random samples
as the number of non-zero sparse samples should be used;
therefore, we can simply choose M = 4K [9]. It is now clear
that the size of the random matrix @ depends uniquely on the
sparsity level K that we expect in the residual vector. Now
the question is how sparse do we expect the residual to be?
An interesting case for the choice of K is obtained for voiced
speech. In this case, the residual r is a train of impulses. Each
impulse is separated by 7T, samples, the pitch period of the
voiced speech which is inversely proportional to the funda-
mental frequency fo. It is now clear that K will depend on T,;
for a segment of voiced speech of length N, we can reasonably
assume to find only N/T,, significant samples in the residual,
belonging to the impulse train. A coarse estimation of the
integer pitch period 7T}, can be easily obtained by an open-loop
search on the autocorrelation function of the vector x. Then the
number of random projections sufficient for recovering x will
be M = 4N/T,. In the case of unvoiced speech the choice of
K is not direct, however we can use a heuristic approach where
K = k is picked when the improvement in the accuracy of the
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Fig. 1. Number of nonzero samples & versus the average normalized recon-
struction error ||x — x||2/||x]||2 for a speech segment x. The values corre-
sponding to K > 30 are not shown for clarity as the error rates converge to
zero.

representation between the choice of K = kand K = k + 1
is negligible.

C. Similarities With Multi-Pulse Excitation

In Multi-Pulse Excitation (MPE) coders the prediction
residual consists of K freely located pulses in each segment of
length V. This problem is made impractical by its combina-
torial nature and a suboptimal algorithm was proposed in [1]
where the sparse residual is constructed one pulse at a time.
Starting with a zero residual, pulses are added iteratively adding
one pulse in the position that minimizes the error between the
original and reconstructed speech. The pulse amplitude is then
found in an Analysis-by-Synthesis (AbS) scheme. The pro-
cedure can be stopped either when a maximum fixed number
of amplitudes is found or when adding a new pulse does not
improve the quality. MPE provides an approximation to the op-
timal approach, when all possible combinations of K positions
in the approximated residual of length IV are analyzed, i.e.,

# = arg min ||x — Hr||2 st. |rljo=K. (13)
reRN
The compressive sensing formulation in (11) can then be seen
to approximate (13), finding a tradeoff between the information
content of the prediction residual and the quality of the synthe-
sized speech.

IV. EXPERIMENTAL RESULTS

To evaluate our method, we have analyzed about one hour of
clean speech coming from several different speakers with dif-
ferent characteristics (gender, age, pitch, regional accent) taken
from the TIMIT database, resampled at 8§ kHz. The order of the
sparse linear predictor is P = 10, the length of the speech frame
is N = 160 (20 ms). Three methods are compared: the MPE,
the CS based approach in (11) and the optimal combinatorial
approach (OPT) in (13). For simplicity, no long-term pitch pre-
diction is performed. In the CS formulation, the random matrix
® is populated with Gaussian samples with distribution N (0, 1)
and the size is chosen according to the level of sparsity we want



106

TABLE I
COMPARISON BETWEEN THE SPARSE RESIDUAL ESTIMATION METHODS.
A 95% CONFIDENCE INTERVALS IS GIVEN FOR EACH VALUE

[METHOD | K | ASSNR | MOS [ 7 ]
oPT 10 [ 21.243.1 | 3.25£0.13 | 343%5

20 | 272416 | 3.5240.09 | 581+3

s 10 | 20.6£2.6 | 3.13£0.16 | 0.3£0.1

20 | 259419 | 3.49£0.13 | 0.5£0.1

MPE 10 | 172£4.1 | 3.03£0.15 | 0.1£0.2

20 | 203432 | 3.2240.12 | 0.9+0.3

to retrieve using the relation M = 4K. The regularization pa-
rameter <y is chosen as the point of maximum curvature of the
L-curve, using the method presented in [13].

In Fig. 1, we present the unquantized results of the three
methods in term of the normalized error ||x — X||2/||x||2, with
% = Hi(K) averaged over all frames, choosing different levels
of sparsity K. It is clear that for K > 10, the CS solution per-
forms similarly to the optimal solution. While for very few sam-
ples K < 5, the performance is comparable to that of MPE.

In the quantized case, we concentrate our experimental anal-
ysis for the two most significant cases (K = 10 and K =
20). The quantization process uses 20 bits to encode the pre-
dictor using 10 line spectral frequencies (providing transparent
coding) using split vector quantization. A 3 bit uniform quan-
tizer that goes from the lowest to the highest magnitude of the
residual pulses is used to code the residual pulses; 5 bits are used
to code the lowest magnitude and 2 bits are used to code the dif-
ference between the lowest and highest magnitudes. The signs
are coded with 1 bit per each pulse. We postpone the efficient en-
coding of the positions to further investigation, for now we just
use the information content of the pulse location log, () bits.
The bit rate produced is respectively 5900 bits/s for K = 10
and 9500 bits/s for K = 20. In Table I, we present the results
in terms of Average-Segmental SNR, MOS and empirical com-
putational time ¢ in elapsed CPU seconds of the three methods
for the quantized case. It is now clear that the CS formulation
achieves similar performances to the optimal case, in a compu-
tational time similar to that of MPE.

As mentioned in the previous section, the CS recovery seems
also particularly attractive for the analysis and coding of sta-
tionary voiced signals. In Fig. 2, we see an example of CS re-
covery of pitch excitation. The open-loop pitch search gives us
a coarse approximation of the pitch period of T, = 35(fp =
229 Hz). We then impose K = [N/T,] = 10 and M = 40,
using the relation M = 4K. From the solution we take the
K = 10 pulses with largest magnitude. We can clearly see that
this kind of approximation works very well in the case of voiced
speech, retrieving the K pulses belonging to the train of im-
pulses with very high accuracy. The distance between pulses is
then approximately 7;,.

V. CONCLUSIONS

In this letter, we’ve introduced a new formulation in the con-
text of speech coding based on compressed sensing. The CS for-
mulation based on LASSO has shown to provide an efficient
approximation of the 0-norm for the selection of the residual al-
lowing a tradeoff between the sparsity imposed on the residual
and the waveform approximation error. The convex nature of
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Fig. 2. Example of CS recovery of the pitch excitation for a segment of sta-
tionary voiced speech. In (a) we show the estimated excitation using (7) and in
(b) the original speech segment. In (c) we show the CS recovered excitation with
K = N/T, = 320/35 = 10 and in (d) the reconstructed speech segment.

the problem, and its dimensionality reduction through the pro-
jection onto random basis, makes it also computationally effi-
cient. The residual obtained engenders a very compact represen-
tation, offering interesting waveform matching properties with
very few samples, making it an attractive alternative to common
residual encoding procedures. The results obtained also show
clearly that CS performs quite well when the basis are not or-
thogonal, as anticipated in some CS literature.
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