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Introduction
Linear Prediction of Speech

◮ LP is, arguably, the most successful tools for the
analysis and coding of speech signals.

◮ Analysis: correspondence with modeling the speech
production process.

◮ Coding: interesting attributes like low delay, scalability
and, in general, low complexity.

◮ Fundamental part of many coding architectures since
the early works on speech coding to the most recent
proposals for unified speech and audio coders.
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Introduction
2-norm Minimization

◮ 2-norm minimization is widely used in inverse problems.

◮ Amenable of producing an optimization problem that is
attractive both theoretically and computationally.

◮ Consistent with producing a representation with
minimal energy.
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Motivation
Why sparsity?

◮ In many signal processing applications it is more
beneficial to find solutions with the fewest nonzero
coefficients as possible, a maximal sparse solution.

◮ Grown significantly in the recent years do to the
increasing use of transform domain representations.

◮ Large number of mathematical tools available for sparse
approximation.

◮ A concise signal representation in a given domain is
generally required for efficient coding.
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Motivation
Why sparsity in Linear Prediction?

◮ Main Idea: reduce the mismatch between a “white
noise”-like prediction residual and a sparse

approximation.
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Motivation
Why sparsity in LP analysis and coding?

◮ Voiced speech generally modeled as an impulse train,
i.e., a sparse sequence.

◮ A concise signal representation arguably related to more
efficient coding.

◮ Why not! ...new formulations for LP-based approaches
may be of general interest (e.g., Audio, ECG, etc.)
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Speech Production
Source-Filter Model

◮ The theory behind the widespread use of LP all-pole
modeling of speech, arises from the source-filter model
of speech production.

◮ Emitted speech sound is a combination of the excitation
process (the air flow) and the filtering process (vocal
tract effect).
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Speech Production
Voiced vs. Unvoiced Speech

◮ Two different ways in which speech sounds are
produced.

◮ Voiced speech:
◮ the airflow is periodically inhibited for short intervals by

the vocal folds,
◮ this periodicity f0 contributes to the perceived pitch,
◮ strong periodic components rich in harmonics.

◮ Unvoiced speech:
◮ the airflow is constricted or completely stopped for a

short interval,
◮ source has noise-like or impulsive-like characteristics

without harmonic structure.
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Speech Production
Mathematical Model

◮ First attempts to provide a mathematical model for
speech production in acoustics rather than signal
processing.

◮ Clear relation between the physics of speech production
and the theory of sound wave propagation in acoustic
cavities.

◮ These early works suffered quite consistently from high
requirements on specific a priori knowledge of the voice.
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Bishnu Atal’s Work
Simplify the Speech Production Theory

B. S. Atal, “Determination of the Vocal-Tract Shape
Directly from the Speech Wave,” J. of the Acoustical

Society of America, 1970.

◮ Approximated the vocal tract with a lossless tube made
by cylindrical sections of equal length but different
diameter.

◮ Exploited the relations of the lossless tube model with
digital filters.

◮ Vocal tract → K poles transfer function (number of
sections of the lossless tube).
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Bishnu Atal’s Work
Discrete Speech Production Model

B. S. Atal ans S. L. Hanauer, “Speech Analysis and
Synthesis by Linear Prediction of the Speech Wave,” J. of

the Acoustical Society of America, 1971.
◮ Introduced the discrete speech production model.
◮ Speech signal is analyzed and synthesized as the output

of a discrete linear all-pole time-varying filter.
◮ The excitation is either a periodic pulse train or a white

noise sequence.
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Bishnu Atal’s Work
Linear Predictive Coding of Speech

B. S. Atal ans M. R. Schroeder, “Predictive Coding of
Speech,” Proc. Conference on Communication, 1967.

◮ Concept of predictive coding to decorrelate a speech
segment by applying a order K prediction filter.

◮ The idea of predictive coding of speech came before the
relations with the mathematical model of speech
production!
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Bishnu Atal’s Work
Speech Production and Predictive Coding

◮ Atal linked these two theories: the prediction filter is
theoretically consistent with the speech production
model.

◮ The corresponding order K all-pole model carries the
information of the tube model of the vocal tract.

◮ Summarizing:
Vocal tract → K poles transfer function → K order
predictor.
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LP Based Speech Analysis
The original sin...

◮ In Atal’s work, the all-pole coefficients are identified by
minimizing the mean-squared (2-norm) error of the
difference between the observed signal and the
predicted signal:

∂E
[

|e(n)|2
]

∂ak

= 0,

where:

e(n) = x(n)−
K
∑

k=1

akx(n − k), 0 < n ≤ N.

◮ This forms the Yule-Walker equations for autoregressive

(AR) model fitting (solver: Levinson recursion).
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LP Based Speech Analysis
Unvoiced Speech

◮ The inverse of K -order LP analysis filter represents the
vocal tract transfer function.

◮ The prediction error (the residual signal) represents the
source.

◮ Unvoiced speech lends itself readily to the principles of
the 2-norm error criterion (white noise excitation).

◮ Itakura also provided the statistical interpretation of the
2-norm minimization with the fitting of the error in a
Gaussian i.i.d. distribution.
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LP Based Speech Analysis
Voiced Speech

◮ In voiced speech, this approach is questionable and,
theoretically not well founded:

◮ The all-pole spectrum does not provide a good spectral
envelope,

◮ does not provide a good approximate of the harmonics
amplitude.

◮ The LP tries to cancel the input voiced speech
harmonics:

◮ the LP spectrum tends to overestimate the spectral
powers at the formants,

◮ sharper contour than the original vocal tract response.



83

Sparsity in Linear
Predictive Coding

of Speech

Daniele Giacobello

Introduction

Background

Source-Filter Model of

Speech Production

LP Based Speech Analysis

19 LP Based Speech Coding

Why 2-norm based LP still
so popular?

LPAS Coding

Sparsity in Signal
Processing

Contributions

Conclusions

Aalborg Universitet,

Denmark

LP Based Speech Coding
General Idea

◮ Atal was able to reduce the entropy of a 5 ms speech
segment sampled at 6.67 kHz from 3.3 b/sample to 1.3
b/sample by applying a 10th order predictor.

◮ LP is used to decorrelate the input leaving a residual
that is ideally white, and easier to quantize.

◮ Minimizing the 2-norm of the residual consistent with
the fundamental theorem of predictive quantization.

◮ Achieving minimal variance of the residual → efficient
coding.
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LP Based Speech Coding
Traditional Usage

◮ Modeling only the the spectral envelope, capturing the
short-term redundancies.

◮ The excitation is usually estimated with some
constrained structure on it.

◮ Sparse techniques are usually employed to model the
excitation for efficient coding.

◮ Examples since early works on speech coding (MPE) to
the currently deployed sparse algebraic codewords
(ACELP).
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Why 2-norm based LP still so popular?

◮ To the author’s best knowledge, the 2-norm is the only
criterion in LP used in commercial speech codecs.

◮ In 40 years, no one has noted the 2-norm based LP
shortcomings?
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Why 2-norm based LP still so popular?

◮ 1967: B. S. Atal and M. R. Schroeder,
“Predictive Coding of Speech.”

...nothing happened...

◮ 2008: D. Giacobello, M. G. Christensen, J. Dahl,
S. H. Jensen, and M. Moonen,
“Sparse Linear Predictors for Speech Processing.”

...really?
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Why 2-norm based LP still so popular?

...no, not really!

◮ A rich literature exists addressing the deficiencies of
2-norm based LP in speech analysis and coding.

◮ Several explanations for the 2-norm popularity, going
around the same concept: simplicity.
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Why 2-norm based LP still so popular?
Mathematical Tractability

◮ The minimization of the 2-norm of the prediction error
results in the Yule-Walker equations and can be
efficiently solved via the Levinson recursion.

◮ The 2-norm cost function is strongly convex allowing for
a unique solution.

◮ The roots of the corresponding all-pole filter are
guaranteed to be inside the unit circle (stability is
intrinsically guaranteed by the construction of the
problem).
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Why 2-norm based LP still so popular?
Statistical Interpretation

◮ Correspondence to the Maximum Likelihood (ML)
approach when the error signal is considered to be a set
of i.i.d. Gaussian variables.

◮ The Gaussian p.d.f. is arguably the most used and well
know distribution for tractable mathematics.

◮ The Yule-Walker equations can be derived from the
maximum likelihood approach.
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Why 2-norm based LP still so popular?
Frequency-Domain Interpretation

◮ Minimizing the 2-norm of the error in the time-domain
is equivalent to minimizing the error ratio between the
true and estimated spectra (Parseval’s Theorem).

◮ Minimizing the squared error in the time domain and in
the frequency domain leads in both cases to the
Yule-Walker equations.
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Linear Predictive Analysis-by-Synthesis (LPAS)
Introduction

◮ Coding paradigm that has set the standard for speech
coding for the past 30 years.

◮ Three main stages of the LPAS coding paradigm:
◮ Linear predictive analysis,
◮ Modeling of the excitation,
◮ Modeling of the pitch periodicity.
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Linear Predictive Analysis
Fundamentals

◮ A speech sample x(n) is approximated as a linear
combination of past samples:

x(n) =
K
∑

k=1

akx(n − k) + e(n),

where {ak} are the prediction coefficients, e(n) is
prediction error. Assuming that x(n) = 0 for n < 1 and
n > N:

x = Xa + e,

with N1 = 1 and N2 = N + K :

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 − K )
...

...
x(N2 − 1) · · · x(N2 − K )






.



83

Sparsity in Linear
Predictive Coding

of Speech

Daniele Giacobello

Introduction

Background

LPAS Coding

30 Linear Predictive Analysis

Modeling the Excitation

Modeling the Pitch
Periodicity

Sparsity in Signal
Processing

Contributions

Conclusions

Aalborg Universitet,

Denmark

Linear Predictive Analysis
Minimization Problem

◮ The coefficients are found by minimizing the prediction
error:

â = arg min
a
‖x− Xa‖pp,

where ‖ · ‖p is the p-norm.

◮ When p = 2 (N1 = 1 and N2 = N + K ) autocorrelation

method:

â = arg min
a
‖x− Xa‖22 = (XT X)−1XT x.

◮ Corresponds to solving the Yule-Walker equations.
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The Excitation Model
General Formulation

◮ Key step of the analysis-by-synthesis procedure.

◮ LP coefficients â calculated in a open-loop
configuration.

◮ The choice of the excitation r̂ is done in a close-loop
configuration (so the name analysis-by-synthesis):

r̂ = arg min
r
‖W(x−Hr)‖22, s.t. struct(r).

◮ H is a convolution matrix, called the synthesis matrix

(obtained from â).

◮ W is the perceptual weighting matrix (obtained from â).

◮ struct(·) represents the structural constraints imposed
on the excitation (determine the encoding strategy).
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The Excitation Model
Multipulse Excitation

◮ In multipulse encoding (MPE) coders, the excitation
consists of K freely located pulses in each segment of
length N.

◮ MPE provides an approximation to the optimal
approach, when all possible combinations of K positions
in the approximated residual of length N are analyzed,
i.e.:

r̂ = arg min
r
‖W(x−Hr)‖22 s.t. ‖r‖0 = K .

◮ Significant amount of bits to be spent on describing
their location on the excitation sequence.

◮ In regular-pulse encoding (RPE) the pulses are
constrained on a grid with spacing S.
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The Excitation Model
Codebook Excitation

◮ The RPE can be considered as the first idea to include
a predetermined structure on the excitation.

◮ This idea has also been developed, around the same
time, in code-excited LP (CELP).

◮ Sequence selected by a predetermined codebook
populated by “random white noise” sequences:

r̂ = arg min
c
‖W(x−Hc)‖22, s.t. c ∈ C .

◮ The general idea, is also to have the sequences
pre-quantized, thus truly selecting the optimal sequence
to be sent to the encoder.

◮ Computationally heavy! Algebraic codebooks (ACELP)
are used instead (simple algebra rather than look-up
tables).
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Modeling the Pitch Periodicity
Accounting for Pitch Periodicity

◮ Voiced speech segments exhibits strong long-term
correlation components due to the presence of a pitch
excitation.

◮ The strategies presented to model the excitation do not
exploit this (quasi-) periodicity.

◮ To account for these correlations, two strategies can be
implemented:

◮ find a long-term linear predictor,
◮ account for the periodicity directly in the excitation

model.
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Modeling the Pitch Periodicity
Pitch Prediction

◮ First attempt implemented to account for long-term
correlations.

◮ This interpretation is similar to modeling the short-term
correlations.

◮ The common choice is:

P(z) = 1− gpz−Tp .

◮ gp and Tp determined by minimizing the residual error
signal after the LP predictor.

◮ Tp is approximately the inverse of f0 (fundamental
frequency).

◮ The frequency response of P(z) is a comb-like structure,
thus resembling a line spectrum, consistent with the
harmonic structure of the voiced speech sounds.
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Modeling the Pitch Periodicity
Adaptive Codebook

◮ Account for the periodicity in the modeled excitation.

◮ The excitation can be seen as a linear combination
between a pseudo-random component cf , and a
periodic component given by the pitch excitation ca:

r̂ = gf cf + gaca,

where cf is the fixed codeword (cf ∈ Cf ) and ca is the
adaptive codeword (ca ∈ Ca), gf and ga are the gains.

◮ Begin with the search for the adaptive codebook
(open-loop estimate of Tp).

◮ The adaptive codeword is built up based on the
“refined” pitch period estimate Tp and its gain.
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Sparsity in Signal Processing
Introduction

◮ Many natural signals have a concise representation
when expressed in the proper basis or a dictionary of
elementary building blocks.

◮ When this sparse representation is truncated in a
suitable way, high precision approximations are obtained
even when very few terms are retained.

◮ First works where sparsity was successfully applied was
indeed speech coding: speech of any desired quality can
be obtained providing a sufficient number of pulses at
the input of the synthesis filter.

◮ Sparse approximation approaches have enjoyed
considerable popularity in recent signal processing
applications.
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Sparsity in Signal Processing
Problem Formulation

◮ The canonical form of the problem:

min
x
‖x‖0, s.t. Ax = b,

where A ∈ R
N×M represent an overcomplete basis.

◮ If x is K -sparse (K ≪ M) only K entries in x are
sufficient to reconstruct b without distortion.

◮ Accounting for modeling errors or measurement:

min
x
‖x‖0, s.t. ‖Ax− b‖22 ≤ ǫ.

◮ Combinatorial problems! Search for the optimal
K -sparse representation would require solving up to

(M
K

)

linear systems.

◮ Need for approximate solutions.
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Algorithms for Approximate Sparse Solutions
Greedy Methods

◮ Greedy methods “break” the optimization problem in a
sequence of smaller problems in which a optimal
solution can be easily found.

◮ Matching pursuit type algorithm (MP and OMP)
iteratively solve the sparse approximation problem
applying a sequence of locally optimal choices in an
effort to determine a globally optimal solution.

◮ The procedure usually terminates when the given
sparsity level K is achieved.

◮ Limitations: optimizing over a series of K sub-problems,
generally not converge to a globally optimal solution.
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Algorithms for Approximate Sparse Solutions
Minimization of Diversity Measures

◮ Replace the combinatorial problem with a related
convex program (relaxation).

◮ Differently from greedy algorithms, it is based on global
optimization, thus, in general, finds improved sparse
solutions.

◮ The 1-norm is chosen as closest convex approximation
of the 0-norm:

min
x
‖x‖1, s.t. ‖Ax− b‖22 ≤ ǫ.

◮ Recent algorithms based on the 1-norm find more focal
solutions (reweighted schemes).

◮ This category is the one that has received the most
interest lately (significant improvements in convex
optimization algorithms).
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Sparse Linear Prediction
Fundamentals 1/2

◮ Consider the speech production model in matrix form:

x = Xa + e.

◮ We can consider a generalized optimization framework
to find a:

min
a
‖x− Xa‖pp + γ‖a‖kk .

◮ How to choose p, k and γ depends on the kind of
applications we want to implement.
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Sparse Linear Prediction
Fundamentals 2/2

◮ If we want to introduce sparsity in the LP optimization
framework, we can set p = 0 and k = 0:

min
a
‖x− Xa‖0 + γ‖a‖0,

◮ γ relates to how sparse a is (prior knowledge of a).

◮ 1-norm used as a convex relaxation of the 0-norm:

min
a
‖x− Xa‖1 + γ‖a‖1.
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Sparse Linear Prediction
Finding a Sparse Residual

◮ Consider now the case of a short-term predictor that
engenders a sparse residual (γ = 0):

min
a
‖x− Xa‖1.

◮ Better statistical fitting: ML approach when the error
sequence is considered to be a set of i.i.d. Laplacian
random variables.

◮ Helpful against over-emphasis on peaks in the envelope
estimation: outperforms the 2-norm in finding a more
proper linear predictive representation in voiced speech.

◮ Sparser residual beneficial also in unvoiced speech.
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Sparse Linear Prediction
Finding a Sparse Residual - Example
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The spiky train characteristic of voiced speech is retrieved more

accurately when we look for a sparse residual.
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Sparse Linear Prediction
Finding a Sparse Residual - Example
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The lower emphasis on peaks in the envelope, when 1-norm mini-

mization is employed, is a direct consequence of the ability to re-

trieve the spiky pitch excitation.
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Sparse Linear Prediction
Finding a High-Order Sparse Predictor

◮ Consider the cascade of a short-term linear predictor
F (z) and a long-term linear predictor P(z) to remove
respectively near-sample redundancies:

A(z) =



1−
Nf
∑

k=1

fkz−k







1−

Np
∑

k=1

gkz−(Tp+k−1)



 .

◮ The resulting prediction coefficient vector a = {ak} of
the high order polynomial A(z) will therefore be highly
sparse.

◮ We can impose sparsity on a high-order predictor:

min
a
‖x− Xa‖pp + γ‖a‖1.

◮ When p = 2 minimum variance approach, p = 1
encourages sparsity also on the residual.
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Sparse Linear Prediction
Finding a High-Order Sparse Predictor - Example
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The prediction coefficients vector is similar to the multiplication of

the short-term prediction filter and long-term prediction filter usually

obtained in cascade.
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Sparse Linear Prediction
Finding a High-Order Sparse Predictor - Example
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Sparse Predictor
Periodogram

Spectral modeling properties of a high order sparse predictor with

only nine nonzero coefficients.
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Sparse Linear Prediction
Finding a High-Order Sparse Predictor

◮ The purpose of the high order sparse predictor is to
model the whole spectrum, i.e., the spectral envelope
and the spectral harmonics.

◮ γ controls the sparsity of the prediction coefficient
vector.

◮ Different approaches to select γ:
◮ fixed,
◮ adaptive (behavior of γ strictly related to how voiced

the segment is),
◮ “optimal” ≈ L−curve

◮ If γ is chosen appropriately, we can obtained again F (z)
and P(z) thorough approximate factorization.

◮ Intrinsic model order selection!
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Sparse Linear Prediction
Reducing the 1-norm 0-norm mismatch
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◮ Reweighted 1-norm minimization balances the
dependence on the magnitude of the 1-norm.

◮ Changing the cost function and moving the problem
towards the 0-norm minimization with convex tools
(convergence to the log-sum penalty function).
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Sparse Linear Prediction
Reweighted 1-norm - Example
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Five iterations of reweighted 1-norm help enhancing sparsity.
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Sparse Linear Prediction
Reweighted 1-norm - Example
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Residual and High-Order Predictor after five iterations of the

reweighting algorithm.
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Sparse Linear Prediction
Compressed Sensing in Sparse LP

◮ Two ingredients needed for CS: a domain where the
signal is sparse and the sparsity level T .

◮ Exploiting knowledge of T a limited number of M ∝ T

random projections are sufficient to recover our
predictors and sparse residual with high accuracy.

◮ The shrinkage of the minimization problem in a lower
dimensional space will have a clear impact on the
complexity.
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Sparse Linear Prediction
Compressed Sensing in Sparse LP

◮ Retrieving the sparse residual with a known predictor:

r̂ = arg min
r
‖r‖1 s.t. Φx = ΦHr,

or
r̂ = arg min

r
‖r‖1 + γ‖Φx− ΦHr‖22.

◮ The problem is projected onto a lower dimensional space
by the random basis Φ of dimension M × N (M ∝ T ).
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Sparse Linear Prediction
Compressed Sensing in Sparse LP

◮ Original MPE problem (known predictor):

r̂ = arg min
r
‖x−Hr‖22 s.t. ‖r‖0 = K .

◮ CS Formulation:

r̂ = arg min
r
‖r‖1 + γ‖Φx− ΦHr‖22.

◮ 1-norm global optimization as convex relaxation of the
0-norm: near-optimal selection of sparse excitation.

◮ Sparsity-knowledge-based shrinkage: reduction of
constraints → computationally faster.
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Sparse Linear Prediction
Compressed Sensing in Sparse LP

◮ To adapt CS principles to the estimation of the predictor
as well, consider the relation between the synthesis
matrix H and the analysis matrix A (A = H+):

min
a,r
‖r‖1 s.t. Φr = Φ(x− Xa).

◮ Equivalent to our original formulation projected onto a
lower-dimensional space.

◮ When looking for a high order sparse predictor, similarly:

min
a,r
‖r‖1 + γ‖a‖1 s.t. Φr = Φ(x− Xa).

◮ Both formulation can also involve a reweighting
procedure.
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Sparse Linear Prediction
Compressed Sensing in Sparse LP - Example
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1-norm solution with and without CS shrinkage (170 equations vs.

80 equations).
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Sparse Linear Prediction
Compressed Sensing in Sparse LP - Example
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CS recovery of the sparse residual. The imposed sparsity level is

T = 20, corresponding to the size M = 80 for the sensing matrix.
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Sparse Linear Prediction
Properties

◮ Consequences of the efficient decoupling between the
source and the filter.

◮ Lower Spectral Distortion for the spectral envelope
estimation.

◮ Invariant to small shift of the analysis window.

◮ Pitch Independence.
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Sparse Linear Prediction
Sparse Linear Predictors in Coding

◮ Synergistic multi-stage coding.

◮ Possibility variable rate coding (model order selection
and intrinsic V/UV classification).

◮ More “fair” distribution between bit allocations on a

and r.

◮ Less parameters necessary.
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Sparse Linear Prediction
Drawbacks

◮ Stability not guaranteed. Methods to tackle this
problem.

◮ Existing ones: 1-norm Burg Method, Reweighted
2-norm.

◮ Reducing the numerical range of the shift operator.
◮ Constrained 1-norm based on the alternative Cauchy

bound.

◮ Computational Complexity:
◮ Compressed Sensing reduces the number of constraints.
◮ Much of the total computational cost in a speech coder

is saved by the “one-step” procedure.

◮ Non-Uniqueness (still optimal!).

◮ Lack of a Frequency-Domain interpretation.
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Re-estimation of LP parameters
Motivation

◮ The linear prediction parameters are first found in a
open-loop configuration and then quantized
transparently.

◮ The search for the best excitation (given certain
constraints) is then done in a closed-loop
configuration...

◮ ...all the responsibility for the distortion is basically on
the residual!

◮ Sparse Linear Prediction already introduced to reduce
the burden on the excitation...

◮ ...but why not finding the predictor also in a “pseudo”
closed-loop configuration?
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Re-estimation of LP parameters
Estimation of the impulse response

◮ The minimization problem to find the residual, can be
rewritten as:

Ĥ = arg min
H
‖(x−Hr̂)‖22 → ĥ = arg min

h
‖(x− R̂h)‖22.

◮ This means that given the residual r̂, we can find the
truncated impulse response that generates the speech
segment:

x = R̂h.

◮ It is clear that the “optimal” sparse linear predictor A(z)
is the one that has h as truncated impulse response.
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Re-estimation of LP parameters
Least squares approximation of the impulse response

◮ Assuming hf the impulse response of the short-term
predictor 1/F (z) and hp the impulse response of the
long-term predictor 1/P(z), we can rewrite the problem
as:

Ĥf , Ĥp = arg min
Hf ,Hp

‖(x−Hf Hp r̂)‖2.

◮ We can then proceed with the re-estimation of the
impulse response of the short-term predictor by solving
the problem:

ĥf = arg min
hf

‖(x− (HpR̂)hf )‖2.

◮ Finally, find the IIR filter predictor that approximates ĥf

through least squares (Y-W eq.). This guarantees
stability and simplicity of the solution.
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Re-estimation of LP parameters
Example
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The different impulse responses: original, the re-estimated adapted

to the quantized residual, and the approximated impulse response

of the new short-term predictor.
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Re-estimation of LP parameters
Properties

◮ A more “crude” approach to speech coding:

minimize D(x, x̂),
subject to R(x̂) = R(â) + R (̂r) ≤ R∗.

◮ More fair distribution between complexity (and bit
allocated) of the two descriptions.

◮ Improvement in the general performances of the Sparse
Linear Prediction framework.
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Frame Dependent/Independent Coding
Motivation

◮ An approach to cope high packet loss in VoIP is to
create speech coders that are totally frame independent.

◮ In the case of telephony with dedicated circuits, high
quality is achieved by the exploitation of inter-frame
dependencies.

◮ Overcoming this mismatch by splitting the information
present in each speech packet into two components:

◮ one to independently decode the given speech frame,
◮ one to enhance it by exploiting inter-frame

dependencies.

◮ Achieving this by exploiting the flexibility of Sparse LP
and the re-estimation procedure!
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Frame Dependent/Independent Coding
System Architecture: Prediction parameters estimation

◮ A sparse linear predictive framework is employed to
achieve a more compact description of all the features
extracted from a speech frame:

â = arg min
a
‖x− Xa‖1 + γ‖a‖1.

◮ The sparse structure of the high order predictor allows a
joint estimation of a short-term and a long-term
predictors A(z) ≈ F̂ (z)P̂(z), the sparse residual allows
for efficient sparse encoding.
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Frame Dependent/Independent Coding
System Architecture: Excitation Estimation

◮ We rethink the analysis-by-synthesis (AbS):

r̂ = arg min
r
‖W(x− Ĥ

[

r̂T
−
, rT
]T

)‖2

s.t. struct(r).

◮ The residual term
[

r̂T
−
, rT
]T

is composed of the K

previous residual samples r̂− (the filter memory, already
quantized) and the current N × 1 residual vector r that
has to be estimated.

◮ Find two residual estimates r̂FD (using r̂−) and r̂FI (not
using r̂−).
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Frame Dependent/Independent Coding
System Architecture: Re-estimation of LP coefficients

◮ With r̂FI and r̂FD, we calculate the truncated impulse
response that generates them:

ĥ = arg min
h
‖(x− R̂h)‖2.

◮ We can split the two contribution as:

Â(z) = F̂ (z)P̂(z)→ Ĥ = Ĥf Ĥp,

and re-estimate only the short-term impulse response.

◮ We can then obtain two estimates of the impulse
responses, a frame dependent one ĥFD

f and a frame

independent one ĥFI
f .

◮ Autoregressive modeling of ĥFD and ĥFI and obtain two
new short-term predictive filters F̂ FI(z) and F̂ FD(z).
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Frame Dependent/Independent Coding
System Architecture: Enhancement Layer

◮ The reconstructed speech for the frame independent
case:

x̂FI = ĤpĤFI
f r̂FI ,

◮ For the frame dependent case:

x̂FD = ĤpĤFD
f

[

(̂rFD
−

)T , (̂rFD)T
]T
.

◮ We transmit the frame independent parameters (̂rFI ,
ÂFI(z) = P̂(z)F̂ FI(z)) and a side stream with the
differences between the two short-term predictors F̂∆(z)
and the differences between the two residuals r̂∆(z).



83

Sparsity in Linear
Predictive Coding

of Speech

Daniele Giacobello

Introduction

Background

LPAS Coding

Sparsity in Signal
Processing

Contributions

Sparse Linear Prediction

Re-estimation of LP

parameters

74 Frame
Dependent/Independent
Coding

Conclusions

Aalborg Universitet,

Denmark

Frame Dependent/Independent Coding
Working mode

◮ If there is no loss of speech packets:

x̂ = Ĥp(ĤFI
f + ĤEN

f )
[

(̂rFI
−

+ r̂EN
−

)T , (̂rFI + r̂EN)T
]T

where ĤEN , r̂EN
−

and r̂EN are functions of the

parameters used to define the enhancement layer F̂∆(z)
and r̂∆(z).

◮ When a k−th frame is missing, the k + 1−th frame is
self-constructed only from the frame independent
parameters.

◮ The k + 2−th frame will be reconstructed using the
frame dependent information (convert the part of the
residual of the k + 1−th frame r̂FI

−
, that will appear in

the reconstruction equation, into the frame dependent
one (̂rFI

−
+ r̂EN
−

)).
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Frame Dependent/Independent Coding
Results
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Performances of the compared methods: G.729a (8 kbps), iLBC

(13.33 kbps), and our method (SpLP) with (FI+EN) and without

(FI) the frame dependent enhancement layer (respectively 10.9 and

7.65 kbps).
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Conclusions

◮ Scheme representative of a more general problem:

min. wpL
D(x, x̂FI) + (1− wpL

)D(x, x̂FI + x̂EN)
s.t. R(x̂FI) + R(x̂EN) ≤ R∗.

◮ The expected distortion will be proportional to the
different bit allocations.

◮ wpL
∝ pL (0 ≤ wpL

< 1).

◮ The bit allocated for the enhancement layer can be also
used to bring information for the packet loss
concealment on how to reconstruct the missing frames
when the loss rate is high.
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Conclusions
Sparsity in the LP optimization framework

◮ Analysis: a more efficient decoupling between the pitch
harmonics and the spectral envelope.

◮ Coding: a synergistic new approach to encode a speech
segment.

◮ Sparse LP applied successfully also in audio processing,
transcending some of the limitation of traditional LP.
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Conclusions
Sparsity in the LPAS framework

◮ A computationally efficient near-optimum multipulse
approach using CS.

◮ New method for the re-estimation of the prediction
parameters in speech coding, creating a new meaning
for the LP parameters.

◮ Providing tradeoffs between the complexity, and thus
the bit-rate, of the two descriptions.

◮ Possibility of estimating predictors and residuals that
create a independently decodable frame of speech.
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Outlook
Provide a Common Coding Framework for Speech and Audio Coding

◮ Current approach: switch between LP and MDCT
coding.

◮ LP filter is generally a quite adequate tool to model the
spectral peaks which play a dominant role in perception.

◮ Low delay, scalability and low complexity make the
extension of LP to audio coding also appealing.

◮ High-order sparse linear predictors for audio and speech
processing:

◮ attractive in modeling the harmonic behavior of audio
and speech signals,

◮ concise parametric representation by exploiting
harmonicity,

◮ accurate spectral modeling consistent with high-order
LP.

◮ Exploiting CS to reduce the computational complexity
in audio, wideband and super-wideband speech.
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Outlook
Redefine the LPAS Coding Scheme

◮ In the AMR-WB coder (23.85 kbit/s configuration)
80% of the bits are allocated for the excitation and only
10% for the predictor.

◮ The re-estimation procedure for the predictor was
proposed to find a tradeoff between the complexity of
the excitation and the complexity of the predictor.

◮ Tradeoff of the sparse representation of the excitation
and the sparse representation of the high-order sparse
predictor can also be considered.

◮ Arguably, a clear relation between sparsity and rate:

R(x̂) ≈ α‖â‖0 + β‖̂r‖0.
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Outlook
Provide Frame Independent Coding

◮ PLC strategies have achieved a certain degree of
maturity.

◮ It is still important to reduce, if not eliminate,
inter-frame dependencies making each frame
independently decodable.

◮ The coding algorithm we have presented divides the
representation of the speech segment is divided between
a frame independent core and a frame dependent
enhancement layer.

◮ The distortion term can be made dependent on the loss
rate and therefore adjusting the bit allocation on the
frame dependent and frame independent parts.
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