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ABSTRACT
In this work, we present a formal procedure for the automated tuning of various parameters in a voice quality
enhancement system. Firstly, we formulate the problem of tuning as a large-scale nonlinear programming problem.
Secondly, we evaluate the performance of perceptual objective quality measures as optimization criteria for our tuning
problem. We then perform a subjective quality assessment to compare the output of a voice quality enhancer obtained
with parameters calculated with these different criteria and also with those obtained through a conventional approach
of tuning by expert listening. The results show that this automated methodology performs well in finding reasonable
solutions for the tuning problem, potentially saving time and resources over manual evaluation and tuning.

1. INTRODUCTION

Voice quality enhancement (VQE) algorithms are integral to
many diverse speech communication devices such as hearing
aids and cellular phones [1]. In particular, VQE algorithms are
crucial in extending the usage of these devices to scenarios with
severe acoustical disturbances [2].

A central aspect of the VQE algorithm design is to properly
tune all the different components in order to handle most, if not
all, possible application scenarios. Tuning is generally recog-
nized throughout the literature as a significant bottleneck when
developing any type of system given the intrinsic combinatorial
nature of the problem [3]. This becomes even harder for VQE
algorithms, and audio systems in general, where the optimiza-
tion criterion relates to the fuzzy concept of perceptually better
quality [4]. This makes subjective listening tests and trained
ears still considered as the most reliable way of measuring the
quality of an audio system. However, this can be a very time
consuming process, often taking much longer than the algo-
rithm design and implementation phases. Furthermore, the hu-
man component in the tuning process makes it error-prone and
bound to cover only a relatively small number of application
scenarios.

The classic approach to get around the subjective nature of the
design and tuning problem is to approximate the concept of per-
ceived quality with metrics easier to describe mathematically
such as the mean squared error (MSE) [5]. These approxima-
tions often poorly relate to the auditory system [6], making the
tuning solution highly suboptimal.

The standard metric for measuring the perceived quality of
speech signals is the mean opinion score (MOS) [7] which
ranks the degradation of a VQE system compared to a high
quality fixed reference from “inaudible” to “very annoying”
on a five-point scale. This score can be calculated using au-
tomated techniques that mimic the human hearing process [8].
The most commonly used method is the Perceptual Evaluation
of the Speech Quality (PESQ) [9]. However, given its limited
scope to speech codecs evaluation, a new model called Per-
ceptual Objective Listening Quality Assessment (POLQA) [10]
was developed. POLQA addresses many of the issues and lim-
itations of PESQ and is meant to produce reliable scores for
VQE tuning.

In this paper, we provide initial results on the automation of the
tuning process of a VQE algorithm using objective perceptual
measures of speech quality. While computationally expensive
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Fig. 1: A block diagram of a VQE system for noise reduction.

and hard to analyze, the MOS produced by these measures cor-
relates with human perception much better than conventional
approaches such as MSE. To the best of our knowledge, the at-
tempt to use these measures for the design and tuning process
of VQE algorithms was only found in [4].

2. NOISE SUPPRESSION

A number of algorithms have been proposed for noise reduc-
tion throughout the years. These algorithms can be divided into
three main categories: spectral subtractive algorithms, statisti-
cal model-based algorithms, and subspace algorithms [1]. We
will focus our attention to the statistical model-based category
which includes some of the most popular algorithms.

Let y[k] = y(kT ) represent values from a band-limited and time-
limited speech signal, uniformly sampled at T = 1/ fs, where fs
is the sampling frequency. The corrupted sequence of speech
can be represented by the additive model: y[k] = x[k] + n[k],
where y[k] is the observed signal, n[k] is the additive noise, and
x[k] is the desired clean speech. The goal of the noise suppres-
sor is to form an estimate, x̂[k], of x[k] based on the observed
signal y[k]. For real-time implementation, the noisy input signal
is usually divided into subsequent overlapping frames of short
duration. The signal frames are then transformed into the fre-
quency domain through the discrete Fourier transform (DFT).
This is also called the analysis-modification-synthesis (AMS)
scheme that wraps around most of the currently deployed VQE
algorithms. Its objective is twofold. Firstly, AMS divides the
signal into manageable frames within which the underlying sta-
tistical properties can be assumed to be invariant. Secondly, by
applying the DFT, it delivers approximately uncorrelated trans-
form coefficients [11]. Taking a K-point DFT of the mth win-
dowed frame yields K complex frequency components:

Yk[m] = Xk[m]+Nk[m], k = 0, . . . ,K−1.

The noise suppression problem is then to retrieve Xk[m] based
on Yk[m]. Two components are generally required, a noise
power estimator and a suppression rule based on this estimate.
In the remainder of the paper we will omit the frame index, m,
wherever possible. A block diagram of the VQE system con-
sidered is shown in Fig. 1.

2.1. Noise Suppression Rule

The idea of noise reduction is to apply a gain on the noisy
speech to obtain an estimate of the clean speech signal: X̂k =
GkYk. The simplest approach to noise reduction is to esti-
mate the clean speech DFT coefficients using a linear mini-
mum MSE (MMSE) estimator [11], often referred to as the fre-
quency domain Wiener filter [12]. The Wiener filter assumes
stationary and statistically uncorrelated speech and noise sig-
nals, i.e., E{XkN∗k } = 0, and is given by GW

k = ξk/(1+ ξk),
where ξk = E{|Xk|2}/E{|Nk|2} = λX [k]/λN [k] is the so-called
a priori signal-to-noise ratio (SNR) that is usually estimated by

ξk = β
|X̂k[m−1]|2

λN [k,m]
+ (1−β )max

{ |Yk[m]|2
λN [k,m]

−1,0
}
. (1)

Under similar assumptions, Ephraim and Malah derived a log-
spectral amplitude (LSA) MMSE estimator [13]:

GLSA
k = GW

k exp
(

1
2

∫
∞

GW
k γk

e−t

t
dt
)
. (2)

Perceptually speaking, (2) has much less musical noise than the
Weiner filter [11], thus making it particularly popular through-
out speech enhancement literature [1]. To further reduce the
musical noise, the suppression gain is limited in practice to a
certain minimum value:

X̂k = ((1−mG)GLSA
k +mG)Yk. (3)

2.2. Noise Power Estimation

The presented suppression rules are heavily dependent on a
proper estimate of the spectral noise power, usually obtained in
combination with a voice activity detector. A newly proposed
algorithm [14] allows for implicitly accounting for the speech
presence probability (SPP). The algorithm is briefly described
as follows (see [14] for more detail).

The MMSE estimation of a noisy periodogram under speech
presence uncertainty results in

E{λN [k]
∣∣Yk}= P(H1

∣∣Yk)λ̂N [k]+ (1−P(H1
∣∣Yk))|Yk|2, (4)

where the a posteriori SPP is calculated by

P(H1
∣∣Yk) =

[
1+(1+ξH1)exp

(
− |Yk|2

λ̂N [k]

ξH1

1+ξH1

)]−1
, (5)

under the assumption of uniform priors, i.e., P(H0) = P(H1) =
0.5. λ̂N [k] = λN [k,m−1] is the previous-frame estimate of the
noise power spectral density (PSD) that is updated by

λN [k,m] = αPSDλN [k,m−1]+(1−αPSD)E{λN [k]|2
∣∣Yk}. (6)

In [14], the author chose a fixed a priori SNR ξH1 by minimiz-
ing the sum of false-alarm and missed-hit probabilities of the
speech presence estimator.
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In order to avoid stagnation due to an underestimated noise
power, a check is performed to see if the a posteriori SPP has
been close to one for too long. A smoothing is performed:

P̄ = αPP̄+(1−αP)P(H1
∣∣Yk), (7)

and the following ad-hoc procedure is used for the update:

P(H1
∣∣Yk) =

{
min{PTH,P(H1

∣∣Yk)}, if P̄ > PTH,

P(H1
∣∣Yk), otherwise.

(8)

3. TUNING AS AN OPTIMIZATION PROBLEM

A general mathematical optimization problem has the form

minimize D(p)

subject to Ui ≤ fi(p)≤ Li, i = 1, . . . ,C,
(9)

where p= {p1, p2, . . . , pN}∈RN is a vector of the optimization
variables, D(·) : RN→R is an objective function, fi (·) : RN→
R, i = 1, . . . ,C are inequality constraint functions, and {Ui,Li}
are limits (bounds) for the constraint functions.

The tuning problem can be easily formulated as the above opti-
mization problem, where an objective function ∆MOS, the in-
crease in MOS produced by the VQE, is calculated from

∆MOS(x̂[k],y[k]) = MOS(x̂[k],x[k])−MOS(y[k],x[k]) .

Assuming that the inequality constraint functions are linear and
univariate, the constraints simplify to lower and upper bounds
of the solution vector, and the optimization problem becomes

maximize ∆MOS
(
x̂[k]|p,y[k]

)
subject to U≤ p≤ L,

(10)

where p is now a vector of parameters to be tuned, x̂[k]|p is
the VQE output obtained with these parameters, and L and U
represent, respectively, the lower and upper bounds of the val-
ues for each variable. While not strictly necessary, explicitly
defining these bounds in our formulation allows us to obtain
fast and reliable solutions. Since the objective function is nei-
ther linear nor convex, there is no effective method for solving
(10). Performing a brute force search with as few as ten vari-
ables can be extremely challenging, while problems with a few
hundreds of variables can be intractable. Therefore, methods to
solve the general nonlinear programming problem utilize sev-
eral different approaches, each of which involves some com-
promises [15].

β mG ξH1 αP PTH αPSD

U 0.98 0.050 63.24 0.90 0.99 0.90
L 0.80 0.001 10.00 0.45 0.90 0.65

pHUMAN 0.98 0.010 31.62 0.50 0.99 0.80
pLSD 0.87 0.003 28.78 0.62 0.94 0.83

pPESQ 0.91 0.010 42.25 0.64 0.95 0.67
pPOLQA 0.95 0.040 21.15 0.76 0.96 0.76

Table 1: Values resulting from the optimization methods for each
parameter vector. The first two rows represent the bounds imposed on
the parameter vector in the optimization process.

4. EXPERIMENTAL RESULTS

The parameters to be estimated are {β ,mG} for the noise sup-
pressor and {ξH1 ,αP,PTH,αPSD} for the noise power estimator.
Considering the problem in (10), we define

p = {β ,mG,ξH1 ,αP,PTH,αPSD}.

To get around the combinatorial nature of the optimization
problem in (10), we chose the so-called genetic algorithm [16]
which can determine global solutions to problems that contain
multiple maxima or minima.

The evaluation corpus was synthetically generated by mixing
the ITU-T P-Series test signals [17], downsampled to 8 kHz,
with a noise database composed of car, babble (airport, exhibi-
tion, etc.), fan, white, and pink noise. Noise and speech were
mixed at SNRs ranging from -5 to 25 dB following the ITU-T
Recommendation P. 835 [18] where the reference signal was
always scaled to an ideal average active level of approximately
-26 dBov to avoid clipping in the mixed signals. The AMS
scheme was designed using a 128-sample (16 ms) Hamming
window a 50% overlap.

The total length of all the combined audio signals amounts
to about 1.5 hours, while the length of each audio signal is
equally distributed between 8 to 16 seconds with roughly 50%
of speech activity. We randomly picked 80% of the corpus for
training and 20% for testing. For the tuning process presented
in (10), we used PESQ and POLQA evaluated over the train-
ing corpus. For comparison purposes, we also optimized over
the log-spectral distortion (LSD), known to provide a reason-
able criterion for speech quality estimation [8], averaged over
the known active speech regions. Through the automated tun-
ing, we obtained three sets of parameters, pPOLQA, pPESQ, and
pLSD. pHUMAN is the set of parameters tuned by expert listen-
ing over a limited set of the training corpus.

The values obtained through the optimization procedure for
each method are shown in Table 1. The upper and lower bounds
used in the optimization problem were determined empirically.
A significant difference in the resulting values can be observed,
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Fig. 2: Results of the MUSHRA listening test. MOS for different
enhancement types averaged over all excerpts and all listeners. The
boxes span the first and third quartile, the whiskers indicate the 95%
confidence intervals.

especially compared to pHUMAN where the values were chosen
mostly based on what presented in the literature (e.g., the fixed
a priori SNR ξH1 in [14]).

We then setup a MUltiple Stimuli with Hidden Reference and
Anchor (MUSHRA) test to subjectively evaluate the perceptual
quality of the four configurations considered. A pool of seven
expert listeners, familiar in detecting small impairments, and
five naive listeners was chosen. The test was performed us-
ing six speech clips randomly selected from the testing corpus.
The anchor was created by low-pass filtering the clean signal at
1.75 kHz before performing the noise mixing (no enhancement
in this case). The results are shown in Fig. 2.

Despite a significant overlap of the 95% confidence regions,
speech obtained with pPOLQA and pPESQ clearly achieves
higher mean and median score of all the tuning methodolo-
gies. Furthermore, their median values do not fall within the
interquartile range of the one another, thus suggesting that the
set of tuning parameters obtained through POLQA offers bet-
ter performance compared to the one obtained through PESQ.
The interquartile ranges of the combined results obtained with
pPOLQA and pPESQ MUSHRA scores do not overlap with those
obtained through pLSD or pHUMAN, suggesting a significant
difference between them. The median values of pLSD and
pHUMAN fall within the interquartile range of one another, sug-
gesting that there is no significant difference between them.

In terms of objective score, calculated via POLQA and PESQ,
the VQE algorithm tuned with pPOLQA achieves roughly 0.2
increase in MOS compared to the hand tuned method. This is
to be expected given that the optimization criteria are the MOS
calculated with these algorithm.

5. CONCLUSIONS

We have provided some initial experimental results on the
application of automated tuning for VQE algorithms using
POLQA and PESQ, objective measures of perceptual speech
quality that predict MOS. Optimizing over an objective crite-
rion that embeds aspect of human perception seems to work
reasonably well in determining better solutions to the tuning
problem. In particular, a MUSHRA test showed a fairly sig-
nificant preference over systems tuned either manually or with
objective non-perceptual measure such as LSD.
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