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Motivation
•Problems with tuning VQE algorithms:
–necessity to tune over most possible applica-
tion scenarios with very different acoustic distur-
bances (combinatorial problem),

–optimization criterion is highly subjective (i.e., per-
ceived quality).

•Proposed approach:
– formalize the tuning process as a large-scale
nonlinear optimization problem [1],

–use of objective and reproducible measures
as optimization criterion that mimic the human
hearing process (e.g., PESQ [2] and POLQA [3]).

1 A Simple VQE: Noise Suppressor

We consider the following model:

Yk[m] = Xk[m] + Nk[m], k = 0, . . . , K − 1.

Two components are generally required to estimate
the clean speech X̂k[m]: a noise power estimator
and a suppression rule based on this estimate.
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A block diagram of a VQE system for noise reduction.

1.1 Noise Suppression Rule

•Apply a gain on the noisy speech to obtain an es-
timate of the clean speech signal: X̂k = GkYk.
•A log-spectral amplitude (LSA) MMSE estimator is
derived in [4]:

GLSA
k = GW

k exp

(
1

2

∫ ∞

GW
k γk

e−t

t
dt

)
,

where GW
k = ξk/(1 + ξk) and ξk = E{|Xk|2}/E{|Nk|2} =

λX[k]/λN [k] is the so-called a priori SNR, estimated
via the D-D approach:

ξk = β
|X̂k[m− 1]|2
λN [k,m]

+ (1− β) max
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− 1, 0

}
.

• The suppression gain is limited to aminimum value:

X̂k = ((1−mG)GLSA
k + mG)Yk.

1.2 Noise Power Estimation

•According to [5], the MMSE estimation of a noisy
periodogram under speech presence uncertainty
results in

E{λN [k]
∣∣Yk} = P (H1

∣∣Yk)λ̂N [k] + (1− P (H1

∣∣Yk))|Yk|2,
where the a posteriori Speech Presence Probabil-
ity (SPP) is calculated by
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and the estimate of the noise PSD is

λ̂N [k,m] = αPSDλN [k,m− 1] + (1− αPSD)E{λN [k]|2
∣∣Yk}.

•An ad-hoc procedure is performed to avoid stag-
nation of the a posteriori SPP:

P (H1

∣∣Yk) =

{
min{PTH, P (H1

∣∣Yk)}, if P̄ > PTH,

P (H1

∣∣Yk), otherwise,

where P̄ = αP P̄ + (1− αP )P (H1

∣∣Yk).

2 Tuning as an Optimization Problem

•Wewant to optimize over the improvement in MOS
produced by the VQE:

∆MOS (x̂[k], y[k]) = MOS (x̂[k], x[k])−MOS (y[k], x[k]) .

• The optimization problem is
maximize ∆MOS (x̂[k]|p, y[k])

subject to U ≤ p ≤ L

–p is the vector of parameters to be tuned.
– x̂[k]|p is the VQE output obtained with p.
–L andU represent the constraints (lower and up-
per bounds) of the solution vector.

3 Experimental Setup

• Evaluation corpus
– ITU-T P-Series speech test signals mixed with a
noise database composed of car, babble, fan,
white, and pink noise.

– SNRs from -5 to 25 dB (reference: -26 dBov).
– total length of all the combined audio signals
about 1.5 hours (80% training).

– length of each audio signal equally distributed
between 8 to 16 s (50% of speech activity).

•Optimization framework
–We optimize over the following parameters:

p = {β,mG, ξH1
, αP , PTH, αPSD}.

–PESQ and POLQA were used to calculate the
MOS. For comparison purposes, we also opti-
mized over the LSD.

–A genetic algorithm was chosen as effective in
determining global solutions to nonlinear combi-
natorial problems [6].

– The upper and lower bounds used in the opti-
mization problem were determined empirically.

–Output sets are pPOLQA, pPESQ, and pLSD.
–pHUMAN is the vector tunedby expert listening over
a limited set of the training corpus.

•MUSHRA test
–A pool of seven expert listeners, familiar in de-
tecting small impairments, and five naive listeners
was chosen.

– The test was performed using six speech clips ran-
domly selected from the testing corpus.

– The anchor was created by low-pass filtering the
clean signal at 1.75 kHz before performing the
noise mixing.

4 Results and Conclusions

• Significant difference in the resulting values were
observed, especially compared to pHUMAN where
the values were chosenmostly based onwhat pre-
sented in the literature (e.g., the fixed a priori SNR
ξH1

in [5]).
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In order to avoid stagnation due to an underestimated noise
power, a check is performed to see if the a posteriori SPP has
been close to one for too long. A smoothing is performed:

P̄ = aPP̄+(1�aP)P(H1
��Yk), (7)

and the following ad-hoc procedure is used for the update:

P(H1
��Yk) =

(
min{PTH,P(H1

��Yk)}, if P̄ > PTH,

P(H1
��Yk), otherwise.

(8)

3. TUNING AS AN OPTIMIZATION PROBLEM

A general mathematical optimization problem has the form

minimize D(p)

subject to Ui  fi(p)  Li, i = 1, . . . ,C,
(9)

where p = {p1, p2, . . . , pN}2RN is a vector of the optimization
variables, D(·) : RN !R is an objective function, fi (·) : RN !
R, i = 1, . . . ,C are inequality constraint functions, and {Ui,Li}
are limits (bounds) for the constraint functions.

The tuning problem can be easily formulated as the above opti-
mization problem, where an objective function DMOS, the in-
crease in MOS produced by the VQE, is calculated from

DMOS(x̂[k],y[k]) = MOS(x̂[k],x[k])�MOS(y[k],x[k]) .

Assuming that the inequality constraint functions are linear and
univariate, the constraints simplify to lower and upper bounds
of the solution vector, and the optimization problem becomes

maximize DMOS
�
x̂[k]|p,y[k]

�

subject to U  p  L,
(10)

where p is now a vector of parameters to be tuned, x̂[k]|p is
the VQE output obtained with these parameters, and L and U
represent, respectively, the lower and upper bounds of the val-
ues for each variable. While not strictly necessary, explicitly
defining these bounds in our formulation allows us to obtain
fast and reliable solutions. Since the objective function is nei-
ther linear nor convex, there is no effective method for solving
(10). Performing a brute force search with as few as ten vari-
ables can be extremely challenging, while problems with a few
hundreds of variables can be intractable. Therefore, methods to
solve the general nonlinear programming problem utilize sev-
eral different approaches, each of which involves some com-
promises [15].

b mG xH1 aP PTH aPSD

U 0.98 0.050 63.24 0.90 0.99 0.90
L 0.80 0.001 10.00 0.45 0.90 0.65

pHUMAN 0.98 0.010 31.62 0.50 0.99 0.80
pLSD 0.87 0.003 28.78 0.62 0.94 0.83

pPESQ 0.91 0.010 42.25 0.64 0.95 0.67
pPOLQA 0.95 0.040 21.15 0.76 0.96 0.76

Table 1: Values resulting from the optimization methods
for each parameter vector. The first two rows represent
the bounds imposed on the parameter vector in the opti-
mization process.

4. EXPERIMENTAL RESULTS

The parameters to be estimated are {b ,mG} for the noise sup-
pressor and {xH1 ,aP,PTH,aPSD} for the noise power estimator.
Considering the problem in (10), we define

p = {b ,mG,xH1 ,aP,PTH,aPSD}.

To get around the combinatorial nature of the optimization
problem in (10), we chose the so-called genetic algorithm [16]
which can determine global solutions to problems that contain
multiple maxima or minima.

The evaluation corpus was synthetically generated by mixing
the ITU-T P-Series test signals [17], downsampled to 8 kHz,
with a noise database composed of car, babble (airport, exhibi-
tion, etc.), fan, white, and pink noise. Noise and speech were
mixed at SNRs ranging from -5 to 25 dB following the ITU-T
Recommendation P. 835 [18] where the reference signal was
always scaled to an ideal average active level of approximately
-26 dBov to avoid clipping in the mixed signals. The AMS
scheme was designed using a 128-sample (16 ms) Hamming
window a 50% overlap.

The total length of all the combined audio signals amounts
to about 1.5 hours, while the length of each audio signal is
equally distributed between 8 to 16 seconds with roughly 50%
of speech activity. We randomly picked 80% of the corpus for
training and 20% for testing. For the tuning process presented
in (10), we used PESQ and POLQA evaluated over the train-
ing corpus. For comparison purposes, we also optimized over
the log-spectral distortion (LSD), known to provide a reason-
able criterion for speech quality estimation [8], averaged over
the known active speech regions. Through the automated tun-
ing, we obtained three sets of parameters, pPOLQA, pPESQ, and
pLSD. pHUMAN is the set of parameters tuned by expert listen-
ing over a limited set of the training corpus.

The values obtained through the optimization procedure for
each method are shown in Table 1. The upper and lower bounds
used in the optimization problem were determined empirically.
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Values resulting from the optimization methods for each
parameter vector. The first two rows represent the bounds

imposed on the parameter vector.

• Evaluation over the testing set provided
∆MOS (x̂[k]|pPOLQA, x̂[k]|pHUMAN) ≈ 0.2 (as expected).
• In the MUSHRA test, pPOLQA and pPESQ clearly
achieves higher mean andmedian score of all the
tuning methodologies.

•POLQA offers better performance compared to
the one obtained through PESQ.
• Statistically significant difference between the
combined scored obtained through pPOLQA and
pPESQ and the one obtained through pLSD or pHUMAN.

0

10

20

30

40

50

60

70

80

90

100

R
E
F

P
O
LQ

A

P
E
S
Q

H
U
M

A
N

LS
D

A
N
C
H
O
R

 

 

Median

Mean

25%−75%

5%−95%

Results of the MUSHRA listening test. MOS for different
enhancement types averaged over all excerpts and all
listeners. The boxes span the first and third quartile, the

whiskers indicate the 95% confidence intervals.

•Optimizing over perceptual objective criteria
seems to work reasonably well in determining bet-
ter solutions to the tuning problem.
• Future work:
–extending the optimization framework to more
complicated VQE algorithms including a larger
number of blocks (e.g., linear and nonlinear
echo canceler, comfort noise generators, multi-
mic systems).

– The larger the set of parameters that need tun-
ing, the higher the expected gains in both quality
and efficiency.
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