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Motivation
In one sentence

◮ Revisiting early concepts in speech and audio analysis in
light of the new development in sparse representation.
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Motivation
Why sparsity in Linear Prediction?

◮ Initial idea: reduce the mismatch between a “white
noise”-like prediction residual and a sparse

approximation.
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Motivation
Why sparsity in Linear Predictive Analysis-by-Synthesis coding?

◮ One of the earliest problems in speech coding!

r̂ = arg min
r

‖W (x − Hr) ‖2 + γ‖a‖0

◮ Solution is impractical due to the combinatorial nature
of the problem.

◮ Suboptimal algorithm was proposed to find one pulse at
the time: Multi-Pulse Encoding (MPE) (= Matching
Pursuit).
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Sparse Linear Prediction
Fundamentals 1/2

◮ A speech sample x(n) is approximated as a linear
combination of past samples:

x(n) =
K

∑

k=1

akx(n − k) + e(n),

where {ak} are the prediction coefficients, e(n) is
prediction error. In matrix form becomes:

x = Xa + e.

◮ We can consider a generalized optimization framework
to find a:

min
a

‖x − Xa‖p
p + γ‖a‖k

k .

◮ How to choose p, k and γ depends on the kind of
applications we want to implement.
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Sparse Linear Prediction
Fundamentals 2/2

◮ If we want to introduce sparsity in the LP optimization
framework, we can set p = 0 and k = 0:

min
a

‖x − Xa‖0 + γ‖a‖0,

◮ γ relates to how sparse a is (prior knowledge of a).

◮ 1-norm used as a convex relaxation of the 0-norm:

min
a

‖x − Xa‖1 + γ‖a‖1.
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Finding a Sparse Residual

◮ Consider now the case of a short-term predictor that
engenders a sparse residual (γ = 0):

min
a

‖x − Xa‖1.

◮ ML approach when the error sequence is considered to
be a set of i.i.d. Laplacian random variables.

◮ Sparser residual beneficial for both analysis and coding
purposes.
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Sparse Linear Prediction
Finding a Sparse Residual - Example
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The spiky train characteristic of voiced speech is retrieved more

accurately when we look for a sparse residual.
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Sparse Linear Prediction
Finding a Sparse Residual - Example
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The lower emphasis on peaks in the envelope, when 1-norm mini-

mization is employed, is a direct consequence of the ability to re-

trieve the spiky pitch excitation.
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Finding a High-Order Sparse Predictor

◮ Consider the cascade of a short-term linear predictor
F (z) and a long-term linear predictor P(z) to remove
respectively near-sample redundancies:

A(z) =



1 −
Nf
∑

k=1

fkz−k







1 −

Np
∑

k=1

gkz−(Tp+k−1)



 .

◮ The resulting prediction coefficient vector a = {ak} of
the high order polynomial A(z) will therefore be highly
sparse.

◮ We can impose sparsity on a high-order predictor:

min
a

‖x − Xa‖p
p + γ‖a‖1.

◮ When p = 2 minimum variance approach, p = 1
encourages sparsity also on the residual.
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Finding a High-Order Sparse Predictor - Example
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The prediction coefficients vector is similar to the multiplication of

the short-term prediction filter and long-term prediction filter usually

obtained in cascade.
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Finding a High-Order Sparse Predictor - Example
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Sparse Predictor
Periodogram

Spectral modeling properties of a high order sparse predictor with

only nine nonzero coefficients.
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Finding a High-Order Sparse Predictor

◮ The purpose of the high order sparse predictor is to
model the whole spectrum, i.e., the spectral envelope
and the spectral harmonics.

◮ γ controls the sparsity of the prediction coefficient
vector. If γ is chosen appropriately, we can obtained
again F (z) and P(z) through approximate factorization.

◮ Intrinsic model order selection!
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Sparse Linear Prediction
Reducing the 1-norm 0-norm mismatch
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◮ Reweighted 1-norm minimization balances the
dependence on the magnitude of the 1-norm.

◮ Changing the cost function and moving the problem
towards the 0-norm minimization with convex tools
(convergence to the log-sum penalty function).
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Compressed Sensing in Sparse LP

◮ If sparse, our solution lies in a subspace of reduced
dimensionality where the Euclidean distance between all
points in the signal model is preserved.

◮ Two ingredients needed for CS: a domain where the
signal is sparse and the sparsity level T .

◮ Exploiting knowledge of T a limited number of M ∝ T

random projections are sufficient to recover our
predictors and sparse residual with high accuracy.

◮ The shrinkage of the minimization problem in a lower
dimensional space will have a clear impact on the
complexity.
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Compressed Sensing in Sparse LP

◮ Original MPE problem (known predictor):

r̂ = arg min
r

‖x − Hr‖2
2 s.t. ‖r‖0 = K .

◮ CS Formulation:

r̂ = arg min
r

‖r‖1 + γ‖Φx − ΦHr‖2
2.

◮ 1-norm global optimization as convex relaxation of the
0-norm: near-optimal selection of sparse excitation.

◮ Sparsity-knowledge-based shrinkage: reduction of
constraints → computationally faster.
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Compressed Sensing in Sparse LP

◮ To adapt CS principles to the estimation of the predictor
as well, consider the relation between the synthesis
matrix H and the analysis matrix A (A = H+):

min
a,r

‖r‖1 s.t. Φr = Φ(x − Xa).

◮ Equivalent to our original formulation projected onto a
lower-dimensional space.

◮ When looking for a high order sparse predictor, similarly:

min
a,r

‖r‖1 + γ‖a‖1 s.t. Φr = Φ(x − Xa).

◮ Both formulation can also involve a reweighting
procedure.
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Compressed Sensing in Sparse LP - Example
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1-norm solution with and without CS shrinkage (170 equations vs.

80 equations).
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Compressed Sensing in Sparse LP - Example
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CS recovery of the sparse residual. The imposed sparsity level is

T = 20, corresponding to the size M = 80 for the sensing matrix.
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Sparse Linear Prediction
Analysis

◮ Main advantage is to overcome some of 2-norm LP
known issues

◮ Lower Spectral Distortion for the spectral envelope
estimation.

◮ Invariant to small shift of the analysis window.
◮ Pitch Independence.
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Sparse Linear Prediction
Coding

◮ Synergistic multi-stage coding (sparse predictor →
sparse encoding).

◮ Possibility variable rate coding through high-order
predictor modeling (→ model order selection and
intrinsic V/UV classification).

◮ More “fair” distribution between bit allocations on a

and r.

◮ Less parameters necessary.
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Sparse Linear Prediction
Drawbacks

◮ Stability not guaranteed. Defined new methods to
tackle this problem:

◮ Reducing the numerical range of the shift operator.
◮ Constrained 1-norm based on the alternative Cauchy

bound.

◮ Computational Complexity:
◮ Compressed Sensing reduces the number of constraints.
◮ Efficient convex optimization algorithms tailor made for

LP.
◮ Much of the total computational cost in a speech coder

is saved by the “one-step” procedure.

◮ Non-Uniqueness (still optimal!).

◮ Lack of a Frequency-Domain interpretation.
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Rate-Distortion Perspective

◮ Minimize distortion between the original signal x and its
synthesized version x̂ subject to some constraints
regarding the rate:

minimize D(x, x̂),
subject to R(x̂) ≤ R∗.

where D(x, x̂) is the distortion measure, R(x̂) is the rate
used to describe x̂, and R∗ is the maximum possible
rate.
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Sparsity in LPAS Coders
Distortion

◮ In LPAS coders The distortion D(x, x̂) is directly
associated with the choice of the predictor â and the
prediction residual r̂:

D(x, x̂) = ‖W(x − Υ(â)̂r)‖2,

where H = Υ(a) is the synthesis matrix used in the AbS
equations (nonlinear transformation of a) and Υ(·)
being the nonlinear operator that maps a into H.

◮ W is the matrix that performs the projection in the
perceptual domain.
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Sparsity in LPAS Coders
Rate and Sparsity

◮ Distortion is related to the selection of â and r̂, we can
split the rate accordingly:

R(x̂) = R(â) + R (̂r).

◮ If we consider the cardinality of the two vectors as a
coarse approximation of the rate:

R(x̂) ∼= α‖â‖0 + β‖̂r‖0,

◮ we can reformulate the problem as (using Lagrange
Multipliers):

â, r̂ = arg min
a,r

‖W(x − Υ(a)r)‖2
2 + γ(α‖a‖0 + β‖r‖0).

◮ The problem is nonconvex, and nonlinear! Use of
convex relaxation and alternate minimization to solve it.
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Alternate Minimization Procedure
Estimating Sparse High-Order LP and Residual

◮ Initial a estimate via Sparse LP, determine H.
◮ Exploiting prior knowledge on the sparsity:

r̂ = arg min
r

‖r‖1 s.t. Φx = ΦHr.

◮ Known r, we estimate a:

â = arg min
a

‖x − Υ(a)r‖2
2 + χ‖a‖0,

◮ Calculate a minimum variance approximation of the
impulse response:

Ĥ = min
H

‖x − Hr‖2
2 ↔ ĥ = min

h
‖x − Rh‖2

2

◮ Ultimately, recalculate the predictor:

â = arg min
a

‖a‖1 s.t. Ψt
′′ +ΨT

′′
a = 0.

where AT = I, t = ĥ = R−1x is the minimum norm
solution x − Tr = 0.
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Alternate Minimization Procedure
Observations

◮ Needs a priori knowledge of the sparsity of a and r to
determine the size of the random matrices for the CS
formulations.

◮ Creates extremely sparse solutions.
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Application of sparsity in LPAS
Frame Dependent/Independent Coding

◮ We apply the rate/distortion sparse approach to the
problem of speech coding robust to packet loss.

◮ An approach to cope high packet loss in VoIP is to
create speech coders that are totally frame independent.

◮ In the case of telephony with dedicated circuits, high
quality is achieved by the exploitation of inter-frame
dependencies.
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Application of sparsity in the LPAS
Frame Dependent/Independent Coding

◮ Frame independent are created cope with packet loss

◮ Frame dependent coders achieve high quality by the
exploitation of inter-frame dependencies.

◮ Splitting the information present in each speech packet
into two components:

◮ one to independently decode the given speech frame,
◮ one to enhance it by exploiting inter-frame

dependencies.

◮ We formulate the problem as:

min. D(x, x̂FI + x̂EN)
s.t. R(x̂FI) + R(x̂EN) ≤ R∗.
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Sparsity in LPAS Coders
Minimization Problem

◮ This problem in a LPAS framework can then be
formulated as:

arg mina,r ‖x − Υ(aFI + aEN)(rFI + rEN)‖2+
χ‖aFI + aEN‖0 + δ‖rFI + rEN‖0.

◮ The frame independent parameters are calculated
without state memory:

âFI, r̂FI = arg mina,r ‖x − Υ(aFI)rFI‖2+
χ‖aFI‖0 + δ‖rFI‖0.

◮ The frame dependent parameters are calculated with

state memory (rFD =
[

r̂T
−

, rT
]T

):

âFD, r̂FD = arg mina,r ‖x − Υ(aFD)(rFD)‖2+
χ‖aFD‖0 + δ‖rFD‖0.
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Frame Dependent/Independent Coding
General Behavior

◮ The reconstructed speech for the frame independent
case:

x̂
FI = Υ(aFI )̂rFI ,

◮ For the frame dependent case:

x̂
FD = Υ(aFD)

[

(̂rFD
−1)

T , (̂rFD)T
]T

.

◮ We transmit the frame independent parameters (̂rFI ,
ÂFI(z)) and a side stream with the differences between
the two predictors ÂEN(z) and the differences between
the two residuals r̂EN(z).

◮ Multipulse encoding.
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Frame Dependent/Independent Coding
Results
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Performances of the compared methods: G.729a (8 kbps), iLBC

(13.33 kbps), and our method (SpLP) with (FI+EN) and without

(FI) the frame dependent enhancement layer (respectively 10.9 and

7.65 kbps).
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Conclusions
Sparsity in the LP optimization framework

◮ Analysis: a more efficient decoupling between the pitch
harmonics and the spectral envelope.

◮ Coding: a more straightforward approach to encode a
speech segment.

◮ Sparse LP applied successfully also in audio processing,
transcending some of the limitation of traditional LP.
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Conclusions
Sparsity in the LPAS framework

◮ New method for the estimation of the parameters in
speech coding, creating a new meaning for the LP
parameters.

◮ Providing tradeoffs between the complexity, and thus
the bit-rate, of the two descriptions.

◮ Highly flexible: possibility of estimating predictors and
residuals that create a independently decodable frames
of audio and speech.
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