REAL-TIME IMPLEMENTATIONS OF SPARSE LINEAR PREDICTION FOR SPEECH PROCESSING

The Danish Council for Strategic Research

T.L. Jensen¹, D. Giacobello², M.G. Christensen³, S.H. Jensen¹ and M. Moonen⁴

¹Dept. of Electronic Systems, Aalborg University, Denmark ²Beats Electronics LLC, Santa Monica, CA, USA ³Audio Analysis Lab, Dept. of Architecture, Design and & Technology, Aalborg Universitet, Denmark ⁴Dept. of Electrical Engineering (ESAT-SCD) and iMinds Future Health Dept., KU Leuven, Belgium {tlj,shj}@es.aau.dk, giacobello@ieee.com, mgc@create.aau.dk, marc.moonen@esat.kuleuven.be

Introduction

AALBORG UNIVERSITY

DENMARK

- Linear prediction is one of the most successful tools for the analysis and coding of speech.
- 2-norm minimization is amenable of producing an optimization problem that is attractive both theoretically and computationally (Yule-Walker equations).

Primal method

We then need to solve the system

 $(X^T D_1 X + \gamma^2 D_2) \Delta \alpha = X^T g_1 - \gamma g_2$. (6)

where $g_1 \in \mathbb{R}^m$, $g_2 \in \mathbb{R}^n$ and $D_1 \in \mathbb{R}^{m \times m}$, $D_2 \in \mathbb{R}^{n \times n}$ are positive definite diagonal matrices.

Dual method

- We then need to solve the system
 - $(D_1 + XD_2X^T)\Delta\lambda = -r.$ (7)
- \triangleright D_1, D_2 are positive definite matrices, $r \in \mathbb{R}^m$.
- Formed and solved in $\mathcal{O}(m^2n+m^3)$ operations

- The 1-norm criterion can give a sparse approximations of the prediction error which allow for a simple coding strategy and/or sparse approximation of high-order predictor. However, computationally can not be solved as efficient as the 2-norm approach.
- **Objective:** hand-tailor an algorithm for solving the sparse linear prediction problem suitable for real-time processing.

Sparse Linear Prediction

Speech production model with samples x[t]

 $x[t] = \sum \alpha_k x[t-k] + r[t],$ (1)

- $\{\alpha_k\}$ are the prediction coefficients.
- \blacktriangleright r[t] is the prediction error.
- Matrix model for a segment of $T = T_2 T_1 + 1$ samples, $t = T_1, T_1 + 1, \dots, T_2$

- Formed and solved in $\mathcal{O}(n^2m + n^3)$ operations via Cholesky factorization.

Implementation

- The proposed algorithms are implemented in M (Matlab) and C++.
- ► The C++ and M implementation uses the LA-PACK and BLAS library from the Intel Math Kernel Library (MKL).
- Mixed precision: first single precision operations then double precision.

via Cholesky factorization.

Experimental Setup

- \blacktriangleright Benchmarking is performed using a $\approx 2.5 \,\mathrm{s}$ long vocalized speech signal sampled at $8 \,\mathrm{kHz}$.
- Settings:
 - #1 frame length is $20 \,\mathrm{ms}$ (T = 160 samples) with order n = 100.
 - #2 frame length is $20 \,\mathrm{ms}$ ($T = 160 \,\mathrm{samples}$) with order n = 40.
- #3 frame length is 5 ms (T = 40 samples) with order n = 10.

Experimental Results

Average (min/max) timings in milliseconds, averaged over 100 runs for each frame.

Methods	#1	#2	#3
CVX+SeDuMi	416.4 (279.2/520.1)	344.7 (246.3/428.5)	172.3 (148.1/200.0)
Mosek	38.40 (28.05/44.00)	17.12 (14.15/41.06)	4.56 (3.60/4.82)
Mprimal	25.24 (14.41/35.48)	11.47 (6.32/14.54)	4.27 (2.26/6.08)
Mdual	23.49 (13.09/30.19)	13.55 (7.78/19.67)	3.15 (2.14/4.84)
CVXGEN	N/A	N/A	0.56 (0.38/0.72)
Cprimal	10.63 (6.70/13.58)	2.30 (1.51/2.75)	0.24 (0.14/0.41)
Cdual	13.79 (7.36/17.70)	5.52 (3.07/8.61)	0.41 (0.28/0.64)
Cprimal(s/d)	8.02 (5.29/10.64)	1.96 (1.36/2.29)	0.23 (0.15/0.30)
Cdual(s/d)	10.22 (5.08/14.69)	4.60 (2.23/6.96)	0.39 (0.24/0.63)

$$x = \begin{bmatrix} x[T_1] \\ \vdots \\ x[T_2] \end{bmatrix} = X\alpha + r,$$

(2)

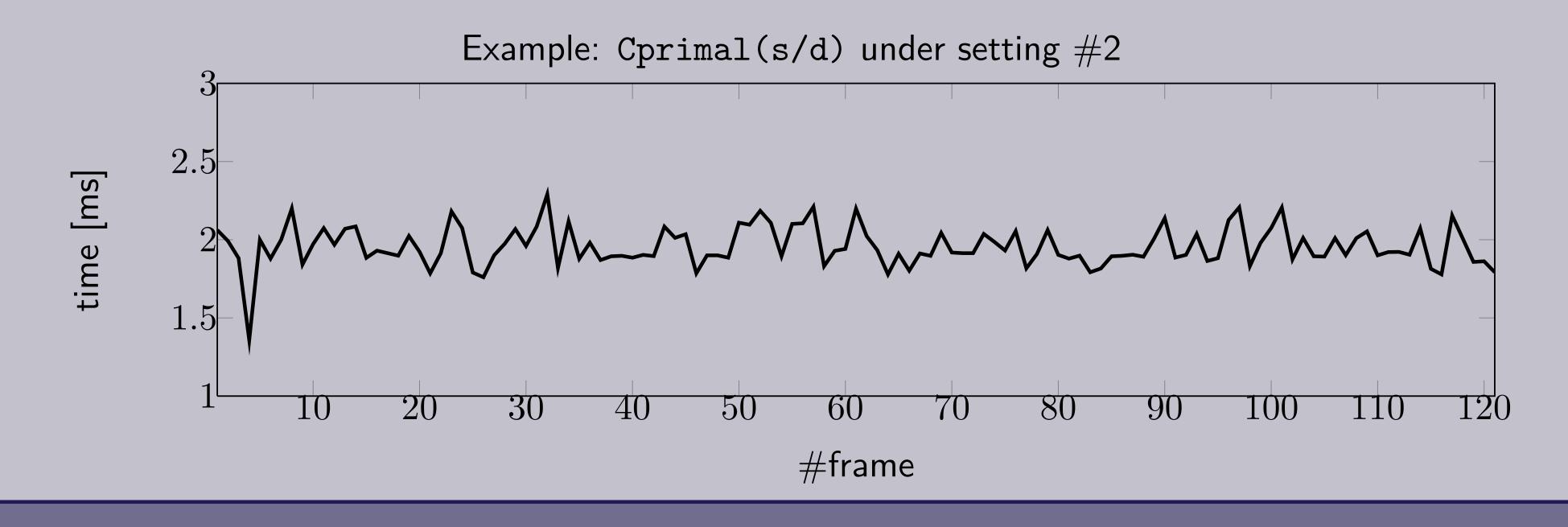
(5)

$$X = \begin{bmatrix} x[T_1 - 1] & \cdots & x[T_1 - n] \\ \vdots & & \vdots \\ x[T_2 - 1] & \cdots & x[T_2 - n] \end{bmatrix} \in \mathbb{R}^{m \times n}.$$
(3)

The general LPC problem is then written as

 $\underset{\alpha \in \mathbb{R}^n}{\text{minimize}} \quad \|x - X\alpha\|_p^p + \gamma \|\alpha\|_q^q \,.$ (4)

- The regularization term γ in (4) can be seen as being related to the prior knowledge of the distribution of the prediction coefficients vector lpha .
- We will use the 1-norm as a computationally tractable approximation of the cardinality measure.



Analysis and Conclusion

References

▶ The problem then becomes [1]

 $\underset{\alpha \in \mathbb{R}^n}{\text{minimize}} \quad \|x - X\alpha\|_1 + \gamma \|\alpha\|_1.$

Methods

- Interior-point methods because: 1) used by state-of-the-art general-purpose software 2) and real-time signal processing [2, 3].
- Key ingredient: fast and stable procedure for solving a linear system of equations in each iteration 4.
- Different "algorithm recipes": primal method [5] and dual method [4].
- ▶ Mprimal vs Cprimal: speed-up of #1: 2.4, #2: 5.0 and #3 17.8. Increasing for smaller problems.
- CVX+SeDuMi is a highly used optimization software for prototyping and is only used here to highlight the potential speed-up that a handtailored algorithm can achieve.
- Conclusion: non-trivial real-time signal processing using hand-tailored convex optimization is possible.

Implementations: sparsesampling.com/sparse_lp.

- [1] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, "Sparse linear prediction and its applications to speech processing," IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 5, pp. 1644-1657, Jul. 2012.
- [2] J. Mattingley and S. Boyd, "CVXGEN: A code generator for embedded convex optimization," Optim. Eng., vol. 13, no. 1, pp. 1–27, Mar. 2012.
- G. Alipoor and M. H. Savoji, "Wide-band speech cod-|3| ing based on bandwidth extension and sparse linear prediction," in Int. Conf. Telecommun. Signal Process. *(TSP)*, Jul. 2012, pp. 454–459.
- [4] S. J. Wright, *Primal-Dual Interior-Point Methods*, SIAM, 1997.

[5] L. Vandenberghe, "The CVXOPT linear and quadratic cone program solvers," 2010, Documentation.