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Introduction
I Linear prediction is one of the most successful

tools for the analysis and coding of speech.
I 2-norm minimization is amenable of producing

an optimization problem that is attractive both
theoretically and computationally (Yule-Walker
equations).

I The 1-norm criterion can give a sparse approx-
imations of the prediction error which allow for
a simple coding strategy and/or sparse approx-
imation of high-order predictor. However, com-
putationally can not be solved as efficient as
the 2-norm approach.

I Objective: hand-tailor an algorithm for solving
the sparse linear prediction problem suitable for
real-time processing.

Sparse Linear Prediction
I Speech production model with samples x[t]

x[t] =
n∑
k=1

αkx[t− k] + r[t], (1)

I {αk} are the prediction coefficients.
I r[t] is the prediction error.
I Matrix model for a segment of T = T2−T1 +1

samples, t = T1, T1 + 1, . . . , T2

x =

 x[T1]
...

x[T2]

 = Xα+ r, (2)

X =

 x[T1 − 1] · · · x[T1 − n]
...

...
x[T2 − 1] · · · x[T2 − n]

 ∈ Rm×n.

(3)
I The general LPC problem is then written as

minimize
α∈Rn

‖x−Xα‖pp + γ‖α‖qq . (4)

I The regularization term γ in (4) can be seen
as being related to the prior knowledge of the
distribution of the prediction coefficients vector
α.

I We will use the 1-norm as a computationally
tractable approximation of the cardinality mea-
sure.

I The problem then becomes [1]
minimize
α∈Rn

‖x−Xα‖1 + γ‖α‖1. (5)

Methods
I Interior-point methods because: 1) used by

state-of-the-art general-purpose software 2)
and real-time signal processing [2, 3].

I Key ingredient: fast and stable procedure for
solving a linear system of equations in each it-
eration [4].

I Different “algorithm recipes”: primal method
[5] and dual method [4].

Primal method
I We then need to solve the system

(XTD1X + γ2D2)∆α = XT g1 − γg2 . (6)

where g1 ∈ Rm, g2 ∈ Rn and D1 ∈ Rm×m,
D2 ∈ Rn×n are positive definite diagonal ma-
trices.

I Formed and solved in O(n2m+ n3) operations
via Cholesky factorization.

Dual method
I We then need to solve the system

(D1 +XD2X
T )∆λ = −r . (7)

I D1, D2 are positive definite matrices, r ∈ Rm.
I Formed and solved in O(m2n+m3) operations

via Cholesky factorization.

Implementation
I The proposed algorithms are implemented in M

(Matlab) and C++.
I The C++ and M implementation uses the LA-

PACK and BLAS library from the Intel Math
Kernel Library (MKL).

I Mixed precision: first single precision opera-
tions then double precision.

Experimental Setup
I Benchmarking is performed using a ≈ 2.5 s long

vocalized speech signal sampled at 8 kHz.
I Settings:
#1 frame length is 20 ms (T = 160 samples)

with order n = 100.
#2 frame length is 20 ms (T = 160 samples)

with order n = 40.
#3 frame length is 5 ms (T = 40 samples) with

order n = 10.

Experimental Results
Average (min/max) timings in milliseconds, averaged over 100 runs for each frame.

Methods #1 #2 #3

CVX+SeDuMi 416.4 (279.2/520.1) 344.7 (246.3/428.5) 172.3 (148.1/200.0)
Mosek 38.40 (28.05/44.00) 17.12 (14.15/41.06) 4.56 (3.60/4.82)

Mprimal 25.24 (14.41/35.48) 11.47 (6.32/14.54) 4.27 (2.26/6.08)
Mdual 23.49 (13.09/30.19) 13.55 (7.78/19.67) 3.15 (2.14/4.84)
CVXGEN N/A N/A 0.56 (0.38/0.72)
Cprimal 10.63 (6.70/13.58) 2.30 (1.51/2.75) 0.24 (0.14/0.41)
Cdual 13.79 (7.36/17.70) 5.52 (3.07/8.61) 0.41 (0.28/0.64)

Cprimal(s/d) 8.02 (5.29/10.64) 1.96 (1.36/2.29) 0.23 (0.15/0.30)
Cdual(s/d) 10.22 (5.08/14.69) 4.60 (2.23/6.96) 0.39 (0.24/0.63)

Example: Cprimal(s/d) under setting #2
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Analysis and Conclusion
I Mprimal vs Cprimal: speed-up of #1: 2.4,

#2: 5.0 and #3 17.8. Increasing for smaller
problems.

I CVX+SeDuMi is a highly used optimization soft-
ware for prototyping and is only used here to
highlight the potential speed-up that a hand-
tailored algorithm can achieve.

I Conclusion: non-trivial real-time signal pro-
cessing using hand-tailored convex optimization
is possible.

Implementations: sparsesampling.com/sparse_lp.

References
[1] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H.

Jensen, and M. Moonen, “Sparse linear prediction and
its applications to speech processing,” IEEE Trans. Au-
dio, Speech, Lang. Process., vol. 20, no. 5, pp. 1644–
1657, Jul. 2012.

[2] J. Mattingley and S. Boyd, “CVXGEN: A code gener-
ator for embedded convex optimization,” Optim. Eng.,
vol. 13, no. 1, pp. 1–27, Mar. 2012.

[3] G. Alipoor and M. H. Savoji, “Wide-band speech cod-
ing based on bandwidth extension and sparse linear pre-
diction,” in Int. Conf. Telecommun. Signal Process.
(TSP), Jul. 2012, pp. 454–459.

[4] S. J. Wright, Primal-Dual Interior-Point Methods,
SIAM, 1997.

[5] L. Vandenberghe, “The CVXOPT linear and quadratic
cone program solvers,” 2010, Documentation.


