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ABSTRACT

In this paper, we propose a formulation of the multidelay adaptive
filter for acoustic echo cancellation by modeling the echo path using
sparse nonuniform partitions. The nonuniform partitioning allows
for a low algorithmic delay without sacrificing the high order of the
adaptive filter. It also further improves upon the computational ef-
ficiency of the uniformly partitioned multidelay filter by leveraging
larger FFT sizes for certain partitions. The sparsity constraint al-
lows for the definition of active and inactive regions of the adaptive
filter, providing a better estimate of the order of the filter. Simula-
tion results are provided showing increased convergence speed with
the same steady-state misalignment compared to traditional multi-
delay filtering with both uniform and nonuniform partitioning.

Index Terms— echo cancellation, multidelay filtering (MDF),
sparse system identification, thresholding.

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a fundamental feature in many
devices that support full-duplex speech communication [1]. The
fundamental premise is to model the echo path with an L tap adap-
tive filter and use it to replicate the unwanted signal at the near-end
microphone. In currently deployed systems L can easily be on the
order of thousands of taps, especially with the ongoing adoption of
wideband speech standards.

An efficient way to compute an L tap adaptive filter is to de-
fine the problem in the frequency domain where the computational
complexity can be greatly reduced by exploiting the efficient Fast
Fourier Transform (FFT) implementation [2]. Moving the problem
to the frequency domain also allows for decorrelation of the input
signal, which is attractive from a convergence perspective [3].

The first approaches of adaptive filtering in the frequency do-
main were based on FFTs of the same size as the time-domain filter
(see, e.g., [2] for an overview). This brought a few practical im-
plementation problems, large quantization error in the FFT, large
block delay, and difficulty with tracking time varying statistics due
to the nonstationarity of the speech segment analyzed. A more flex-
ible structure was then proposed in [4], where a filter of length L
is segmented intoK shorter subfilters, significantly reducing the al-
gorithmic delay toN = L/K. However,K could be quite large for
long impulse responses since delay must be kept reasonably low in
real-time communication.

To keep the same processing delay while increasing the effi-
ciency over conventional multidelay filtering (MDF), the partitions
can be divided in a non-uniform manner, as shown in Fig. 1. The
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Figure 1: Example of uniform and nonuniform partitioning for MFD.

approach is generally to use shorter partitions near the beginning of
the impulse response to achieve low latency and longer partitions
towards the end to take advantage of increased computational effi-
ciency (see, e.g., [5–7]).

In echo cancellation systems, the impulse response length L
can vary considerably depending on the environment. The solution
is then to employ an L tap filter, fixed at some compromise value
determined by observation of typical scenarios [8]. It is well known
that the minimum mean squared error of the filter output is a mono-
tonic non-increasing function of the tap length [8]. However, in real
scenarios a very long filter cannot track changes in echo response
well and often suffers from an increase in adaptation noise. Several
methods have been proposed to address this issue [9]. However,
they all add a significant computational overhead.

While a typical room impulse response is hardly sparse [10], the
effect of over-estimating the model order creates a problem where
many of the coefficients at the end of the impulse response should be
zero. Thus, another way to cope with this issue is to introduce spar-
sity criteria within the adaptive error minimization [11–15]. This
allows for faster convergence because only the coefficients that con-
tribute significantly to the energy in the error are updated.

In this paper, we propose an acoustic echo cancellation algo-
rithm that exploits the computational efficiency and flexibility of the
nonuniform MDF. A non-quadratic constraint that promotes spar-
sity is added in the partitions of the adaptive filter. The sparse con-
straint at each iteration results in a Landweber iteration with thresh-
olding (or nonlinear shrinkage), for which a rich theory exists to
prove its convergence in norm [15, 16].
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2. MULTI-DELAY FILTER

2.1. Uniformly partitioned MDF

Let N be the MDF block size, K be the number of blocks and
F2N denote the 2N × 2N Fourier transform matrix, we denote the
frequency-domain signals for frame m as

e(m) = F2N [01×N , e(mN), . . . , e(mN +N − 1)]T ,

Xk(m) = diag{F2N [x((m− k − 1)N − 1), . . .

. . . , x((m− k + 1)N − 1)]T },
d(m) = F2N [01×N , d(mN), . . . , d(mN +N − 1)]T .

(1)

where d(m) is signal that we want to model, e(m) is the modeling
error, and Xk(m) is the observed signal. The MDF algorithm then
becomes

e(m) = d(m)− ŷ(m), (2)

ŷ(m) =

K−1∑
k=0

G1Xk(m)ĥk(m− 1), (3)

with model update

∀k : ĥk(m) = ĥk(m− 1) +G2µ(m)∇ĥk(m), (4)

∇ĥk(m) = P−1
XkXk

(m)XH
k (m)e(m), (5)

where G1 and G2 are matrices which select certain time-domain
parts of the signal in the frequency domain,

G1 = F2N

[
0N×N 0N×N

0N×N IN×N

]
F−1

2N ,

G2 = F2N

[
IN×N 0N×N

0N×N 0N×N

]
F−1

2N .

The matrix PXkXk (m) = XH
k (m)Xk(m) is a diagonal approxi-

mation of the input power spectral density matrix [4]. To reduce the
variance of the power spectrum estimate, the instantaneous power
estimate is usually substituted by its smoothed version,

PXkXk (m) = βPXkXk (m− 1) + (1− β)XH
k (m)Xk(m), (6)

where β is the smoothing term. We will also assume a fixed step-
size for each partition µ(m) = µ0I.

2.2. Nonuniformly partitioned MDF

Let us now consider a generalization of the original uniformly parti-
tioned MDF formulation with J partitions. In order to simplify the
notation, we will assume the length of all the nonuniform partitions
is a multiple integer of the first partition of lengthN . A j th partition
will have length BjN , where

B = [B0, B1, B2, . . . , BJ−1] (7)

determines the length of the partitions normalized by N and B0 =
1. Generalizing (3), the echo modeling becomes

ŷ(m) =

J−1∑
j=0

G1jXj(m)ĥj(m), (8)

where Xj(m) is defined as

Xj(m) = diag{F2BjN [x((m−
j∑

i=1

Bi −Bj)N), . . .

. . . , x((m−
j∑

i=1

Bi +Bj)N − 1)]T }. (9)

G1j is a 2N × 2BjN matrix that selects the last N samples in the
vector and appends zeros on top after performing the inverse Fourier
transform. It is a parallel-to parallel operation:

G1j = F2N

[
0N×N . . . . . . 0N×N

0N×N . . . . . . IN×N

]
F−1

2BjN
.

The lower-right corner of the block matrix will contain Bj N ×N
identity matrices. The rest of the notation in Section 2.1 can then
also be easily generalized for the nonuniform case. For clarity, G2

in (2.1), for the j th component becomes

G2j = F2BjN

[
IBjN×BjN 0BjN×BjN

0BjN×BjN 0BjN×BjN

]
F−1

2BjN
.

3. ADAPTATION ALGORITHM WITH A SPARSE
PARTITION CRITERION

We now define an adaptive criterion in order to minimize the model
mismatch with respect to the filter coefficients. In particular, we
are looking for a criterion to retrieve a sparse echo estimate that al-
lows us to turn-off inactive partitions of the filter. This allows us
to use a high order multidelay filter where only the partitions that
correspond to the actual model in the echo cancellation are active.
A parallelism can be seen with model order selection rather than
sparse retrieval, as in general, the length of the retrieved echo re-
sponse will be equal to the order of the filter [9, 12].

Considering the optimization problem at frame m, for each j th

component
min

hj(m)∈RBjN
ϕ(ej(m)). (10)

The common optimization problem proposes the minimization of
the mean square error, represented by the 2-norm, ϕ(·) = ‖ · ‖22.
Considering a second-order Taylor approximation of the cost func-
tion around the neighborhood of ĥj(m − 1) [17], the next update
point on the error curve is given by (4) and (5).

In our case, we assume that the whole partition vector h is
sparse. We can then add a penalization term to our original problem
(10) in order to take this into account:

min
hj(m)∈RBjN

ϕ(ej(m)) + ψ(hj(m)). (11)

Measuring sparsity is often associated with the cardinality or 0-
norm ‖ · ‖0, a NP-hard problem of combinatorial nature. We solve
this somewhat subtle problem by using the 1-norm ‖ · ‖1, which
is known throughout the sparse recovery literature to perform well
as a relaxation of the 0-norm (see, e.g., [18]). The problem in (11)
then becomes

min
hj(m)∈RBjN

‖ej(m)‖22 + γj‖hj(m)‖1, (12)

where γj controls how sparse the j th filter should be. One of the
most popular methods for solving problem (12) is in the class of iter-
ative shrinkage-thresholding algorithms (ISTA) [16,18], where each
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iteration involves solving (4) followed by a shrinkage/thresholding
step [15].

The common problem found throughout convex optimization
uses a first-order gradient method. In our case we use a second-
order approximation of the Taylor series [19], where the Hessian is
approximated by P−1

XkXk
(m). The filter update step of our algo-

rithm, (4), then becomes

∀j : ĥj(m) = Tε

(
ĥj(m− 1) +G2jµ0∇ĥj(m)

)
. (13)

In the literature, the operator T generally functions on a element-by-
element basis. In our case, we modify it to operate on a partition-
by-partition basis. Furthermore, given the structure of our problem
we employ a hard-thresholding operator:

Tε(hj) =

{
0, ‖hj‖1 ≤ εj ;
hj , ‖hj‖1 > εj .

(14)

The hard thresholding in (14) can be seen as criterion to distinguish
between active and inactive partitions. Furthermore, much of the
theory of optimality of soft-thresholding for sparse approximation
carries over to hard-thresholding [18]. The whole algorithm is sum-
marized in Algorithm 1. Since εj ∝ γj , the choice of the threshold
is not trivial [18]. However, a reasonable choice for εj is to be
in the order of the estimated noise level normalized for the block
length. In the optimization literature, the thresholding theoretical
basis can be traced back to the proximal forward-backward itera-
tive scheme introduced in [20] where convergence results are also
provided. Furthermore, as shown in [21], the thresholding opera-
tion can also be interpreted as the probability Maximization step
of an Expectation-Maximization algorithm, where a sparse prior is
employed.

Algorithm 1 SNUP-MDF Echo Canceller
Input: uplink signal segment d(m),

downlink signal segment x(m)
Output: residual echo ê(m)
m← 0
while halting criterion do

for j ∈ J do
BT =

∑j
i=1Bi

Xj = diag{F2BjN [x((m−BT −Bj)N),

. . . , x((m−BT +Bj)N − 1)]T }
end for
ŷ(m) =

∑J−1
j=0 G1j Xj(m)ĥj(m)

d0(m) = F2N [01×N , d(mN), . . . d(mN +N − 1])T

e0(m) = d0(m)− ŷ(m)
e(t,m) = last N terms of F−1

2Ne0(m)
for j ∈ J do
BT =

∑j
i=1Bi

ej(m) = F2BTN [01×BTN , e(m−BT −Bj), . . . , e(m)]T

PXjXj (m) = βPXjXj (m)+ (1− β)XH
j (m)Xj(m)

∇ĥj(m) = P−1
XjXj

(m)XH
j (m)ej(m)

ĥj(m+ 1) = ĥj(m) +G2jµ0∇ĥj(m)

ĥj(m+ 1) = T (ĥj(m+ 1))
end for
m← m+ 1

end while

4. EXPERIMENTAL RESULTS

For the experimental analysis, we have chosen to analyze the con-
vergence of the algorithm and its behavior in tracking changes of the
impulse response. In particular, we focused on changes in length,
and thus sparsity, of the echo impulse response. We compared
the behavior of the traditional uniformly partitioned MDF (MDF),
nonuniformly partitioned MDF (NUP-MDF), and its sparse exten-
sion (SNUP-MDF). We considered the measure of sparsity for the
model to identify as [22]:

ξ(h) =
L

L−
√
L

(
1− ‖h‖1√

L‖h‖2

)
. (15)

This measure is more accurate than ‖ · ‖0 to measure the number of
relevant coefficients, as an impulse response with identically zero
components is not realistic due to measurement noise.

We considered two setups which are relevant in mobile scenar-
ios. In the first setup, the true impulse response is initially very
sparse, then changes into a significantly denser response (ξ(h1) ≈
0.12 → ξ(h2) ≈ 0.67). In the second setup, we used two sim-
ilarly sparse responses, a denser one first and a sparser one later
(ξ(h1) ≈ 0.19 → ξ(h2) ≈ 0.09). The room impulse responses
were calculated in real environments using the Audio Precision
APx525 log-swept chirp signal through the Beats by Dr. Dre Pill
Portable Speaker and truncated to the desired length (fs=48kHz,
resampled at 8 kHz).

We allocated a L = 1408 filter and defined N = 32, which
determined K = 44 partitions for the MDF. For the traditional
nonuniform case (NUP-MDF), we used the following vector to de-
fine the partitions, as shown in (7):

B = [1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8],

where
∑

j NBj = 1408. We defined the downlink signal as an
autoregressive signal x(k) = 0.8x(k − 1) + n(k), where n(k) is
a white Gaussian noise with zero mean and unitary variance. The
signal is then convolved with the true impulse response and white
noise is added with SNR=25 dB. The noise level determines εj used
for the thresholding in (14). We also defined β = 0.85 and µ = 0.2
in the adaptation algorithm.

We then compare the algorithm by measuring the misalignment
between the true impulse response, h ,and estimated impulse re-
sponse , ĥ [1]. The results are shown in Figure 2 and Figure 3.

In both cases, the algorithm shows much faster convergence
rates than the implementation without the sparsity constraint. It is
also easy to see that initially the algorithm very quickly “disables”
the high order parts of the filter, thus speeding considerably the con-
vergence. In Figure 2, the algorithm turns rapidly on inactive parts,
thus adapting relatively quickly to the longer response. In the case
of slight change in response length, as shown in Figure 3, all three
algorithms perform roughly the same, however SNUP-MDF uses a
filter significantly shorter than the other two methods, this allow-
ing for computational savings. As a general remark, the NUP-MDF
performs slightly worse than the traditional MDF due to the fact that
we use the same step-size for all partitions [23].

In the current implementation, the complexity of the SNUP-
MDF algorithm is in the same order as the complexity of the NUP-
MDF. The savings are only related to avoiding the multiplication,
FFT, and IFFT of the unused partitions to calculate the output in (8),
and, in turn, the error driving the adaptation. In order to react fast to
possible changes in the impulse response length, we still calculate
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Figure 2: Misalignment comparison for the changing impulse response
sparsity ξ(h1) ≈ 0.12, ξ(h2) ≈ 0.67, and estimated cardinality of ĥ.
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Figure 3: Misalignment comparison for the changing impulse response
sparsity ξ(h1) ≈ 0.19, ξ(h2) ≈ 0.09, and estimated cardinality of ĥ.

the gradient (5) and the filter update (4), before the thresholding. A
more efficient approach would be “probing” the inactive parts only
every n samples, using an approach similar to [24]. Furthermore,
the long partitions do not need to be updated every B0 samples, es-
pecially when Bj >> B0 the statistics of the Hessian and gradient
will vary very slowly. However, the uniformly partitioned MDF has
the advantage of allowing a more straightforward implementation of
the buffer (1) compared to (9), thus efficient implementation of the
nonuniform convolution are still subject of research and definitely
not trivial (see, e.g., [25] and references within).

5. CONCLUSIONS

Introducing a sparsity criterion in the nonuniform partition update
has shown a substantial improvement in convergence speed and, po-
tentially, a net improvement in computational complexity. However,
given the complex architecture, an efficient implementation of the
NUP-MDF and SNUP-MDF is not trivial, and it will be the subject
of further studies.
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