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Motivation
•Nonuniformly partitioned MDF:
–generalization of uniform partitioning,
– low algorithmic delay without sacrificing the
high order of the adaptive filter [1].

• Sparse constraint on the MDF partitions
–determines active and inactive regions of the
adaptive filter [2,3],

–updates only coefficients that contribute to
the system identification [4].

Algorithm 1 SNUP-MDF Echo Canceller

Input: microphone signal segment d(m),
loudspeaker signal segment x(m)

Output: residual echo ê(m)

m ← 0

G1j =

[
0N×N . . . . . . 0N×N

0N×N . . . . . . IN×N

]
F−1

2BjN

G2j = F2BjN

[
IBjN×BjN 0BjN×BjN

0BjN×BjN 0BjN×BjN

]
F−1

2BjN

while halting criterion do
for j ∈ J do

Construct J observation matrices from the loudspeaker signal
BT =

∑j
i=1 Bi

Xj = diag{F2BjN [x((m− BT − Bj)N),
. . . , x((m− BT +Bj)N − 1)]T}

end for
Modeled loudspeaker signal
ŷ(m) =

∑J−1
j=0 G1j Xj(m)ĥj(m)

Microphone signal
d0(m) = F2N [01×N , d(mN), . . . d(mN +N − 1])T

Residual echo
e0(m) = d0(m)− ŷ(m)
e(t,m) = last N terms of F−1

2Ne0(m)

for j ∈ J do
ej(m) = F2BjN

[
01×BjN , e0(m), . . . , e0(m)

]T

Power spectrum estimate
PXjXj

(m) = βPXjXj
(m)+ (1− β)XH

j (m)Xj(m)

Gradient calculation
∇ĥj(m) = P−1

XjXj
(m)XH

j (m)ej(m)

Update filter
ĥj(m+ 1) = ĥj(m) +G2jµ0∇ĥj(m)

Thresholding
ĥj(m+ 1) = T (ĥj(m+ 1))

end for
m ← m+ 1

end while

1 Nonuniformly partitioned MDF

•MDF filter composed of J nonuniform partitions
of BjN samples.
•We define the vector of the length of the parti-
tions normalized by N as:

B = [B0, B1, B2, . . . , BJ−1], and B0 = 1.

 Impulse response of length L 
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Example of uniform and nonuniform partitioning for MDF.

2 Adaptation with a Sparse Criterion

• The optimization problem at frame m, for each
jth component is

min
hj(m+1)∈RBjN

‖ej(m)‖22.

•A second-order Taylor approximation of the
cost function around the neighborhood of
ĥj(m) determines the next update point on the
error curve.
•Assuming that the whole partition vector h is
sparse, we add a penalization term to the orig-
inal problem [5]:

min
hj(m+1)∈RBjN

‖ej(m)‖22 + γj‖hj(m + 1)‖1,

where γj controls how sparse the jth filter should
be.
•Problem can be solved efficiently using a It-
erative Shrinkage-Thresholding Algorithm (ISTA):
the 2-norm gradient problem is solved then fol-
lowed by a shrinkage/thresholding step [6].

• ISTA generally uses a first-order gradient
method, we use a more precise second-order
approximation of the Taylor series where the
Hessian is approximated by P−1XkXk

(m). The filter
update step of our algorithm then becomes
∀j : ĥj(m + 1) = Tε

(
ĥj(m) +G2jµ0∇ĥj(m)

)
.

•We employ a hard-thresholding operator to dis-
tinguish between active and inactive partitions:

Tε(hj) =

{
0, ‖hj‖1 ≤ εj;
hj, ‖hj‖1 > εj.

• The choice of εj is not trivial, it should be propor-
tional to the background noise floor εj ∝ σN .
• Theory of optimality of soft-thresholding for
sparse approximation carries over to hard-
thresholding [6,7].

3 Experimental Results
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Misalignment comparison for the changing impulse re-
sponse sparsity. In the first setup, the true impulse response
is initially very sparse, then changes into a significantly
denser response ξ(h1) ≈ 0.12 → ξ(h2) ≈ 0.67. In the second
setup, we used two similarly sparse responses, a denser one
first and a sparser one later ξ(h1) ≈ 0.19 → ξ(h2) ≈ 0.09.
ξ(h) = (L/(L−

√
(L)))(1− ‖h‖1/‖h‖2).

• Evaluating the convergence of the algorithm
and its behavior in tracking changes in model
length (sparsity).
•Comparison with MDF, nonuniformly parti-
tioned MDF (NUP-MDF), and the proposed
sparse extension (SNUP-MDF).
•We allocated a L = 1408 filter and defined N =
32, which determined K = 44 partitions for the
uniform MDF. For the NUP-MDF (

∑
jNBj = 1408):

B = [1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8].
•Downlink signal defined as
x(k) = 0.8x(k − 1) + n(k), where n(k) ∝ N(0, 1).
• The signal is then convolved with the true im-
pulse response and white noise is added with
SNR=25 dB.
• εj ∝ SNR, β = 0.85, µ = 0.2.

4 Conclusions

• Sparsity→ intrinsic model order estimation.
• Improvement in convergence speed.
•Potential savings in computation by avoiding
multiplication, FFT, and IFFT of the unused par-
titions to calculate the output.
•Downside: complex architecture highly depen-
dent on partition size choice. An efficient im-
plementation of the NUP-MDF and SNUP-MDF is
not trivial [8].
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