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Motivation

e Nonuniformly partitioned MDF:

—generalization of uniform partitioning,
—-low algorithmic delay without sacrificing the
high order of tThe adaptive filter (1).
e SpaArse constraint on the MDF partitions

- determines active and inactive regions of the
adaptive filter (2, 3),

—updates only coefficients that contribufe to
the system identification (4).

Algorithm 1 SNUP-MDF Echo Canceller

Input: microphone signal segment d(m),
loudspeaker signal segment x(m)

Output: residual echo é(m)
m < 0
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while halting criterion do
for y € J do

Construct J observation matrices from the loudspeaker signal
Br=>_,B;
Xj — diag{FQBjN[x((m — BT — B])N),

...,x((m = Br+ B;)N = 1)]*'}

end for

Modeled lagdspeaker signal

A~ —1 C

y(m) =) iy Gi; X;(m)h;(m)

Microphone signal

do(m) = FQN[leN, d(WN), ce d(mN -+ N — 1]>T

Residual echo

eo(m) = do(m) — §(m)
e(t,m) = last N terms of Fyeq(m)

for j € Jdo
ej(m) = Fap N [leBjN, ey(m), ... ,eo(m)}
Power spectrum estimate
Px,x,(m) = Px x;(m)+ (1 — B)X} (m)X;(m)
Gradient calculation
Vh;(m) = Py x (m)X{ (m)e;(m)
Update filter X
hi(m+1) =h,;(m)+ Ga;uoVh;(m)
Thresholding
h;(m+ 1) = T(h;(m + 1))

end for

m < m-—+1

end while

1 Nonuniformly partitioned MDF

e MDF filter composed of J nonuniform partitions
of B;N samples.

e We define the vector of the length of the parti-
tions normalized by N as:

B =[By,B,,B,,...,B;4], and Bj=1.
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Non-uniform Partitioning

Example of uniforrn and nonuniform partitioning for MDF.

2 Adaptation with a Sparse Ciriterion

e [The optimization problem at frame m, for each

7™ component is
min _||e;(m)]f5.
h;(m+1)eR"™

e A second-order Taylor approximation of the
c;os’r function around the neighbornood of
h,(m) defermines the next update point on the
error curve,

e Assuming that the whole partition vector h is
sparse, we add a penalization term o the orig-
iInal problem (5):

min_ - le;(m)|[ + v;lh;(m + 1)1,
h](erl)ER J

where +; controls how sparse the ;™ filter should
be.

e Problem can be solved efficiently using a It-
erative Shrinkage-Thresholding Algorithm (ISTA):
the 2-norm gradient problem is solved then fol-
lowed by a shrinkage/thresholding step (6).
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¢ ISTA generdlly uses a first-order gradient
method, we use a more precise second-order
approximation of the Taylor series where the
Hessian is approximated by Py (m). The filter
update step of our algorithm then becomes

Vji: him+1)=T. (ﬁ](m) +- ng,roﬁj(m)) .
e We employ a hard-thresholding operator to dis-
tinguish between active and inactive partitions:
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e The choice of ¢; is not trivial, it should lbe propor-
tional fo the background noise floor ; o< .

e [Neory of optimality of soff-thresholding for
sparse approximation carries over to hard-
thresholding (6, 7).

3 Experimental Results
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Misalignment comparison for the changing impulse re-
sponse sparsity. In the first setup, the true impulse response
is initially very sparse, then changes into a significantly
denser response ¢(hy) ~ 0.12 — £(hs) ~ 0.67. In the second
setup, we used two similarly sparse responses, a denser one
first and a sparser one later ((h;) ~ 0.19 — &(hy) =~ 0.09.

§(h) = (L/(L — /(L)1 — |[h]1/[hll2)-

e Evaluating the convergence of the algorithm
and its behavior in fracking changes in model
length (sparsity).

e Comparison with MDF, nonuniformly parti-
tioned MDF (NUP-MDF), and the proposed
sparse extension (SNUP-MDF).

e We dllocated a L = 1408 filter and defined N =
32, which determined K = 44 partitions for the

uniform MDF. For the NUP-MDF (3 . N B; = 1408):
B=101,1,1,1,2,2,2,2,4,4,4,4,8,8].

e Downlink signal defined as
(k) =0.8x(k — 1)+ n(k), where n(k) o< N(0,1).

e [he signal is then convolved with the true im-

pulse response and whife noise is added with
SNR=25 dB.

oc; xx SNR, 3 =0.85, u = 0.2

4 Conclusions

e Sparsity — intrinsic model order estimation.
e IMmprovement in convergence speed.

e Potential savings in computation by avoiding
multiplication, FFT, and [FFT of the unused par-
fitions fo calculate the output.

e Downside: complex architecture highly depen-
dent on partition size choice. An efficient im-

plementation of the NUP-MDF and SNUP-MDF is
not frivial (8).
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