A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation

Daniele Giacobello & Joshua Atkins Beats Electronics, LLC

Motivation

- Nonuniformly partitioned MDF:
- -generalization of uniform partitioning,
- -low algorithmic delay without sacrificing the high order of the adaptive filter (1).
- Sparse constraint on the MDF partitions
- determines active and inactive regions of the adaptive filter (2,3),
- -updates only coefficients that contribute to the system identification (4).

Igorithm 1 SNUP-MDF Echo Canceller
Input: microphone signal segment $d(m)$, loudspeaker signal segment $x(m)$
Output: residual echo $\mathbf{\hat{e}}(m)$
$m \leftarrow 0$
$\mathbf{G}_{1j} = \begin{bmatrix} 0_{N \times N} & \dots & 0_{N \times N} \\ 0_{N \times N} & \dots & \dots & \mathbf{I}_{N \times N} \end{bmatrix} \mathbf{F}_{2B_j N}^{-1}$
$\mathbf{G}_{2j} = \mathbf{F}_{2B_jN} \begin{bmatrix} \mathbf{I}_{B_jN \times B_jN} & 0_{B_jN \times B_jN} \\ 0_{B_jN \times B_jN} & 0_{B_jN \times B_jN} \end{bmatrix} \mathbf{F}_{2B_jN}^{-1}$
while halting criterion do
for $j \in J$ do
Construct J observation matrices from the loudspeaker signal $B_T = \sum_{i=1}^{j} B_i$ $\mathbf{X}_i = \operatorname{diag}\{\mathbf{F}_{2B,N}[x((m - B_T - B_i)N)]\}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$
end for
Modeled loudspeaker signal
$\hat{\mathbf{y}}(m) = \sum_{j=0}^{J-1} \mathbf{G}_{1j} \mathbf{X}_j(m) \hat{\mathbf{h}}_j(m)$
Microphone signal
$\mathbf{d}_0(m) = \mathbf{F}_{2N}[0_{1 \times N}, d(mN), \dots d(mN+N-1])^T$
Residual echo
$\mathbf{e}_0(m) = \mathbf{d}_0(m) - \mathbf{\hat{y}}(m)$
$\mathbf{e}(t,m) = \text{last } N \text{ terms of } \mathbf{F}_{2N}^{-1} \mathbf{e}_0(m)$
for $j \in J$ do
$\mathbf{e}_{j}(m) = \mathbf{F}_{2B_{j}N} \left[0_{1 \times B_{j}N}, \mathbf{e}_{0}(m), \dots, \mathbf{e}_{0}(m) \right]^{T}$
Power spectrum estimate
$\mathbf{P}_{\mathbf{X}_j \mathbf{X}_j}(m) = \beta \mathbf{P}_{\mathbf{X}_j \mathbf{X}_j}(m) + (1 - \beta) \mathbf{X}_j^H(m) \mathbf{X}_j(m)$
Gradient calculation
$\boldsymbol{\nabla} \hat{\mathbf{h}}_j(m) = \mathbf{P}_{\mathbf{X}_j \mathbf{X}_j}^{-1}(m) \mathbf{X}_j^H(m) \mathbf{e}_j(m)$
Update filter
$\mathbf{h}_j(m+1) = \mathbf{h}_j(m) + \mathbf{G}_{2j}\mu_0 \nabla \mathbf{h}_j(m)$
Thresholding
$\mathbf{h}_j(m+1) = T(\mathbf{h}_j(m+1))$
end for
$m \leftarrow m + 1$
end while

Example of uniform and nonuniform partitioning for MDF.

Adaptation with a Sparse Criterion

• The optimization problem at frame m, for each j^{th} component is

$$\min_{\mathbf{n}_{i}(m+1)\in\mathbb{R}^{B_{j}N}}\|\mathbf{e}_{j}(m)\|_{2}^{2}$$

- A second-order Taylor approximation of the cost function around the neighborhood of $\hat{\mathbf{h}}_{i}(m)$ determines the next update point on the error curve.
- \bullet Assuming that the whole partition vector h is sparse, we add a penalization term to the original problem (5):

 $\min_{\mathbf{h}_{j}(m+1)\in\mathbb{R}^{B_{j}N}} \|\mathbf{e}_{j}(m)\|_{2}^{2} + \gamma_{j}\|\mathbf{h}_{j}(m+1)\|_{1},$

where γ_i controls how sparse the j^{th} filter should be.

 Problem can be solved efficiently using a lterative Shrinkage-Thresholding Algorithm (ISTA): the 2-norm gradient problem is solved then followed by a shrinkage/thresholding step (6).

Experimental Results 3

Contact Information: Beats Electronics, LLC 1601 Cloverfield Blvd Suite 5000N Santa Monica, CA, USA 90404

Email: {giacobello, joshatkins}@ieee.org

 ISTA generally uses a first-order gradient method, we use a more precise second-order approximation of the Taylor series where the Hessian is approximated by $P_{\mathbf{X}_{k}\mathbf{X}_{k}}^{-1}(m)$. The filter update step of our algorithm then becomes

$$\forall j: \quad \mathbf{\hat{h}}_j(m+1) = T_{arepsilon}\left(\mathbf{\hat{h}}_j(m) + \mathbf{G}_{2_j}\mu_0 \mathbf{\nabla}\mathbf{\hat{h}}_j(m)\right).$$

• We employ a hard-thresholding operator to distinguish between active and inactive partitions:

$$T_{\varepsilon}(\mathbf{h}_j) = \begin{cases} 0, & \|\mathbf{h}_j\|_1 \le \varepsilon_j; \\ \mathbf{h}_j, & \|\mathbf{h}_j\|_1 > \varepsilon_j. \end{cases}$$

• The choice of ε_i is not trivial, it should be proportional to the background noise floor $arepsilon_j \propto \sigma_N$. • Theory of optimality of soft-thresholding for sparse approximation carries over to hardthresholding (6,7).

Misalignment comparison for the changing impulse response sparsity. In the first setup, the true impulse response is initially very sparse, then changes into a significantly denser response $\xi(\mathbf{h}_1) \approx 0.12 \rightarrow \xi(\mathbf{h}_2) \approx 0.67$. In the second setup, we used two similarly sparse responses, a denser one first and a sparser one later $\xi(\mathbf{h}_1) \approx 0.19 \rightarrow \xi(\mathbf{h}_2) \approx 0.09$. $\xi(\mathbf{h}) = (L/(L - \sqrt{(L)}))(1 - \|\mathbf{h}\|_1 / \|\mathbf{h}\|_2).$

- length (sparsity).

- SNR=25 dB.

Conclusions

- not trivial (8).

References

- (1) G. P. Egelmeers and P. C. Sommen, "A New Method For Efficient Convolution in Frequency Domain by Nonuniform Partitioning for Adaptive Filtering," IEEE Transactions on Signal Processing, vol. 44, no. 12, pp. 3123–3129, 1996.
- (2) R. Martin, W. Sethares, R. Williamson, and J. Johnson, C.R., "Exploiting Sparsity in Adaptive Filters," IEEE Transactions on Signal Processing, vol. 50, no. 8, pp. 1883– 1894, 2002.
- (3) P. A. Naylor, J. Cui, and M. Brookes, "Adaptive Algorithms for Sparse Echo Cancellation," Signal Processing, vol. 86, no. 6, pp. 1182–1192, 2006.
- (4) Y. Sun, J. Chen, and K. K. Parhi, "Multi-Delay Block Frequency Domain Adaptive Filters with Sparse Partial Subblock Update," in Record of the 43rd Asilomar Conference on Signals, Systems and Computers. IEEE, 2009, pp. 206–209.
- (5) Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, "A Sparse Adaptive Filtering Using Time-Varying Soft-Thresholding Techniques," in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2010, pp. 3734–3737. (6) D. L. Donoho, "De-noising by Soft-Thresholding," IEEE Transactions on Information
- *Theory*, vol. 41, no. 3, pp. 613–627, 1995. (7) R. Bruck, "On the Weak Convergence of an Ergodic Iteration for the Solution of Variational Inequalities for Monotone Operators in Hilbert Space," Journal of Mathematical Analysis and Applications, vol. 61, no. 1, pp. 159–164, 1977.
- (8) E. Battenberg and R. Avizienis, "Implementing Real-Time Partitioned Convolution Algorithms on Conventional Operating Systems," in 14th International Converence on Digital Audio Effects DAFx, no. 1, 2011.

 Evaluating the convergence of the algorithm and its behavior in tracking changes in model

• Comparison with MDF, nonuniformly partitioned MDF (NUP-MDF), and the proposed sparse extension (SNUP-MDF).

• We allocated a L = 1408 filter and defined N =32, which determined K = 44 partitions for the uniform MDF. For the NUP-MDF ($\sum_i NB_i = 1408$): $\mathbf{B} = [1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8].$

Downlink signal defined as

x(k) = 0.8x(k-1) + n(k), where $n(k) \propto N(0, 1)$.

• The signal is then convolved with the true impulse response and white noise is added with

• $\varepsilon_i \propto \text{SNR}, \beta = 0.85, \mu = 0.2.$

• Sparsity \rightarrow intrinsic model order estimation.

Improvement in convergence speed.

 Potential savings in computation by avoiding multiplication, FFT, and IFFT of the unused partitions to calculate the output.

• Downside: complex architecture highly dependent on partition size choice. An efficient implementation of the NUP-MDF and SNUP-MDF is