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ABSTRACT

This paper addresses the challenging scenario for the distant-talking
control of a music playback device, a common portable speaker with
four small loudspeakers in close proximity to one microphone. The
user controls the device through voice, where the speech-to-music
ratio can be as low as −40 dB during music playback. We propose
a speech enhancement front-end that relies on known robust meth-
ods for echo cancellation, double-talk detection, and noise suppres-
sion, as well as an adaptive quasi-binary mask that is well suited for
speech recognition. The optimization of the front-end system is then
formulated as a large scale nonlinear programming problem where
the recognition rate is maximized and the optimal values for the sys-
tem parameters are found through a genetic algorithm. The back-
end speech recognition system is designed using two methodologies:
deep neural networks and subspace Gaussian mixture models. We
validate our methodology by testing over the TIMIT database for
different music playback levels and noise types. Finally, we show
that the proposed front-end allows a natural interaction with the de-
vice for limited-vocabulary voice commands.

Index Terms— Speech recognition, echo cancellation, speech
enhancement, genetic algorithm, neural networks

1. INTRODUCTION

The human interaction paradigm with music playback devices has
seen a dramatic shift as devices get smaller and more portable. Well-
established interaction media such as remote controls are no longer
adequate. Automatic speech recognition (ASR) interfaces offer a
natural solution to this problem, where these devices are typically
used in hands-busy, mobility-required scenarios [1]. Performing
ASR on these small devices is highly challenging due to the mu-
sic playback itself, the environmental noise, and the general envi-
ronmental acoustics, e.g., reverberation [2]. In particular, due to the
severe degradation of the input signal, the ASR performance drops
significantly when the distance between the user and the microphone
increases [3]. In the past decade, the literature on distant-talking
speech interfaces provided several solutions to the problem, e.g., the
DICIT project [4]. However, to the authors’ knowledge, the avail-
able solutions rely heavily on large microphone arrays [5], which
may be infeasible for handheld portable devices.

In this work, we present a robust front-end speech enhancement
and ASR solution for a single-microphone limited-vocabulary sys-
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Fig. 1. A block diagram of the front-end enhancement system.

tem during continuous monaural music playback. In contrast to
previous studies, the microphone in our system is placed in close
proximity to the loudspeakers, and the voice command still needs
to be recognized at a very low speech-to-echo ratio (SER) while the
music is playing and at a low speech-to-noise ratio (SNR) (due to
background noise).

The front-end algorithm design effort can be divided into two
parts. Firstly, we tailor double-talk robust solutions for echo can-
cellation and speech enhancement to retrieve a clean estimate of the
command [7, 8, 9]. Secondly, we propose a novel noise reduction
method, where we combine a traditional minimum mean-squared
error (MMSE) speech enhancement approach [10] with an estimate
of the ideal binary mask [11]. The parameters of the algorithm are
tuned for maximum recognition rate by casting the tuning problem as
a nonlinear program, solved efficiently through a genetic algorithm
(GA) [12]. A similar approach was used in [13, 14] to maximize
the objective perceptual quality of a speech enhancement system
for full-duplex communication. The training and evaluation corpora
are generated through a synthetic mixture of clean speech (from the
TIMIT database [16]) and music, both convolved with separate im-
pulse responses, and further mixed with a background noise to cover
as many deployment scenarios as possible. Our proposed approach
is then applied on a command recognizer for the hands free device
using real recordings.

The paper is organized as follows. In Section 2, we describe
the speech enhancement algorithm and outline the parameters to be
tuned. In Section 3, we briefly describe the back-end recognizer. The
tuning of these parameters by nonlinear optimization is presented in
Section 4. The experimental results in Section 5 are divided in two
parts. Firstly, we present the results of the training and evaluation of
the front-end and acoustic models using the TIMIT database. Sec-



ondly, we change the language model and implement our ASR sys-
tem for a limited vocabulary command recognizer in very adverse
conditions.

2. SPEECH ENHANCEMENT SYSTEM

Let y[n] be the near-end microphone signal, which consists of the
near-end speech s[n] and noise v[n], mixed with the acoustic echo
d[n] = h[n] ∗ x[n] (music playback in our case), where h[n] is the
impulse response of the system, x[n] is the far-end reference signal,
and ∗ is the convolution operator. The overall block diagram of the
speech enhancement algorithm is shown in Figure 1, which consists
of two robust acoustic echo cancelers (RAECs), a double-talk prob-
ability (DTP) estimator, two residual power estimators (RPEs), a
noise power estimator (NPE), and a noise suppressor (NS).

2.1. Robust Acoustic Echo Canceler

Since strong near-end interference may corrupt the error signal of
the acoustic echo canceler (AEC) and cause the adaptive filter to
diverge, the RAEC system [7, 9] is used, where the error recovery
nonlinearity and robust adaptive step-size control allows for continu-
ous tracking of the echo path during double talk. To reduce the delay
of the frequency-domain adaptive filter [17], the multi-delay adap-
tive filter structure [18] is used. A cascaded structure similar to the
system approach of [8] is used: the output of the first RAEC is fed to
the input of the second RAEC, which is different from the original
system approach in [8] where the input to the second RAEC is still
the microphone signal (a parallel structure instead of the cascaded
structure used in this work).

The tuning parameters for each of the RAECs consist of the
frame size NAEC, the number of partitioned blocks MAEC, the num-
ber of iterations Niter, the step-size µAEC, the tuning parameter γAEC

for the robust adaptive step-size, and the smoothing factor αAEC for
the power spectral density estimation.

2.2. Residual Echo Power Estimator

Since the AEC cannot cancel all the echo signal due to model-
ing mismatch, further enhancement from the residual echo suppres-
sor (RES) is required to improve the voice quality. A coherence
based method similar to [21, 22] is used for the RPE, and a modi-
fied version of the DTP estimator similar to [23] is used for a more
accurate estimate of the residual echo power. As shown in Figure 1,
the DTP estimator differs from that in [23] since the coherence is
calculated between the RAEC estimated echo signal d̂ and the mi-
crophone signal y rather than between the loudspeaker signal x and
the microphone signal y. This is possible since the estimated echo
signal d̂ can be reliably obtained even during double talk due to the
robust echo path tracking performance of the RAEC.

In this work, we propose to estimate the residual echo power by
utilizing the output of the double talk probability estimator. Ideally,
when the double-talk probability is high, the level of residual echo
power estimate should be low so as to not distort the near-end speech
when suppressing the residual echo. On the other hand, when the
double-talk probability is low, the level of residual echo power esti-
mate should be high to suppress as much residual echo as possible.
The high level residual echo power λBH,k is estimated based on the
coherence of the microphone signal Yk and the reference signal Xk,
while the low level residual echo power λBL,k is estimated based on
the coherence of the error signal Ek and the reference signal Xk.
Finally, the residual echo power λB,k is estimated by utilizing the

double-talk probability estimate PDT
k obtained from DTP to combine

λBH,k and λBL,k:

λB,k[m] = (1− [m]PDT
k [m])λBH,k[m] + PDT

k [m]λBL,k[m], (1)

where k is the frequency bin and m is the time frame.
The tuning parameters for the DTP consist of the transition prob-

abilities a01, a10, b01, and b10, the smoothing factors αDTP and βDTP,
the frequency bin range [kbegin, kend], the frame duration TDTP, and
the adaptation time constants τ . The tuning parameters for the RPE
consist of the numbers of partitions MRPEH and MRPEL to calculate
the coherence and the smoothing factors αRPEH and αRPEL for the
power spectral density estimation.

2.3. Noise Suppressor

In this work, we combine the RPE and NPE for residual echo and
noise suppression using a single noise suppressor, as shown in Fig-
ure 1. The low complexity MMSE noise power estimator [20] is
used for the NPE, and the Ephraim and Malah log-spectral ampli-
tude (LSA) estimator [10] is used for the combined residual echo
and noise suppression:

GLSA
k [m] =

ξk[m]

1 + ξk[m]
exp

(
1

2

∫ ∞
ξk[m]γk[m]

1+ξk[m]

e−t

t
dt

)
. (2)

The estimation of the a priori SNR ξk is done using the decision-
directed (DD) approach [19]:

ξk[m] = αDD
|Ŝk[m− 1]|2

λV,k[m] + λB,k[m]

+ (1− αDD)max{γk[m]− 1, 0},
where

γk[m] = λE,k[m]/(λV,k[m] + λB,k[m])

and λE,k, λV,k, and λB,k are the residual error signal power, the
noise power, and residual echo power respectively.

The tuning parameters of the NPE consist of the fixed a pri-
ori SNR ξH1 , the threshold PTH, and the smoothing factors αP and
αNPE. The tuning parameters of the the NS consist of the smoothing
factor for the SNR estimator αDD.

2.4. Generation of Speech Enhancement Mask

It has been recently shown that the speech recognition accuracy in
noisy conditions can be greatly improved by direct binary masking
[11] when compared to marginalization [24] or spectral reconstruc-
tion [25]. Given our application scenario, we propose to combine the
direct masking approach, particularly effective at low overall SNRs,
with the NS output mask GLSA

k , as shown in Figure 1. In particular,
we exploit the estimated bin-based a priori SNR ξk to determine the
type of masking to be applied to the spectrum. However, given that
an accurate estimation of the binary mask is very difficult for very
low SNRs, we elect to use the LSA estimated gain for those cases
(as described in [15]). Our masking then becomes:

ζk[m] =


[(1−Gmin)G

LSA
k [m] +Gmin], ξk[m] ≤ θ1,

α
2
, θ1 < ξk[m] < θ2,

2+α
2
, ξk[m] ≥ θ2,

where Gmin is the minimum suppression gain [14], and the output is
then:

Ŝk[m] = ζk[m]Ek[m]. (3)
Tuning parameters for the direct masking consist of the mini-

mum gain Gmin, the thresholds θ1 and θ2, and tuning parameter α.



3. BACK-END SPEECH RECOGNIZER

The signal processed by the front-end of Figure 1 is then pro-
cessed by the back-end recognizer which extracts features and pro-
ceeds with the sequence likelihood calculation based on the designed
acoustic model distributions. As an alternative to commonly used
hidden Markov models (HMMs), we chose two recently introduced
statistical paradigms for modeling the distributions: one based on
deep neural networks (DNN) [26], and the other is based on sub-
space Gaussian mixture models (SGMM) [27]. In both cases, a 40-
dimensional feature vector is processed by the back-end recognizer
consisting of perceptual linear prediction (PLP), linear discrimi-
nant analysis (LDA), maximum likelihood linear transform (MLLT),
and feature-space maximum likelihood linear regression (fMLLR)
[30, 27]).

3.1. Deep Neural Networks

DNNs evaluate the likelihood of a particular sequence using a feed-
forward neural network that takes several frames of features as in-
put and produces posterior probabilities over hidden Markov model
(HMM) states as output. DNNs help efficiently model data that lie
on or near a nonlinear manifold in the data space [28]. Thus, DNNs
with many hidden layers have been shown to outperform GMMs on
a variety of speech recognition benchmarks, sometimes by a large
margin [28]. The DNN architecture consists of 3 hidden layers with
1024 neurons in each layer and 11 frame inputs (5 past frames and 5
future frames).

3.2. Subspace Gaussian Mixture Models

In contrast with standard GMM-HMM systems where state level
observation densities consist of a dedicated mixture of multivariate
Gaussian mixtures in subspace GMM share a common structure. In
this formalism, the means and mixture weights are controlled by a
global mapping from a vector space, through one or more state pro-
jection vectors, to the GMM parameter space (for more detail see
[27]).

4. THE TUNING PROBLEM

The tuning problem can be formalized as an optimization problem.
In our case, the objective function to maximize is the ASR recogni-
tion rate R (ŝ[n]), where ŝ[n] is the processed speech, i.e., the output
of the speech enhancement system. To restrict the search region, we
can impose inequality constraints on the variables that simply de-
termine lower and upper bounds for the components of the solution
vector. Our optimization problem then becomes:

maximize R (ŝ[n,p])

subject to L ≤ p ≤ U,
(4)

where p is now the vector of the parameters that need tuning, ŝ[n,p]
is the speech enhancement system output obtained with these param-
eters, and L and U represent, respectively, lower and upper bounds
for the values each variable. The basic concept of a GA is to apply
genetic operators, such as mutation and crossover, to evolve a set
of M solutions, or population, Π(k) = {p(k)

m ,m = 1, . . . ,M} in
order to find the solution that maximizes the cost function [12, 29].
The steps are as follows.

1. An initial population of M solutions Π(k), k = 0 is gen-
erated by randomly choosing in the space of feasible values
[L,U].

2. Compute the ASR accuracy R
(
ŝ[n,p

(k)
m ]
)

for each candi-
date solution of the population.

3. Combine sets of candidates with best accuracy through
crossover and randomize the coefficients of the worst can-
didates through mutation to determine a better candidate.

4. Repeat steps 2 and 3 for K iterations (generations) or until
a halting criterion is reached. The set of parameters p

(K)
m ∈

Π(K) that maximizes the cost function will be our estimate:

p̂ = argmax
p
(K)
m ∈Π(K)

R
(
ŝ[n,p(K)

m ]
)
. (5)

5. EXPERIMENTAL RESULTS

In this section, we present the results from our designed speech en-
hancement front-end with the tuned parameters using the optimiza-
tion method presented in Section 3. In order to obtain the set of
parameters that maximize the recognition rate, we optimized and
tuned the system on a noisy TIMIT database and on our real-world
command recordings.

5.1. Processing on TIMIT Database

5.1.1. Noisy TIMIT Database Generation

The database was generated by simulating the interaction between
the user and the playback device. In this scenario, music is played
from a loudspeaker system in which a microphone is placed one cen-
timeter away from the loudspeaker. The microphone signal y[n] was
then generated according to:

y[n] = s[n] + σ1d[n] + σ2v2[n],

which consisted of the speech s[n], the acoustic echo from the music
d[n] and the background noise v2[n] (babble noise). For each file in
the TIMIT database, the SER and SNR were chosen from uniform
distributions ranging from−30 dB to 10 dB and from 0 dB to 30 dB,
respectively. We used 12 impulse responses recorded on the device
in real rooms randomly picked and normalized to unitary energy.
The values of σ1 and σ2 were calculated based on SER and SNR.
The music sound, d[n], was randomly selected from five different
music tracks of different genres with random starting points.

5.1.2. Recognition on noisy TIMIT

In order to optimize the parameters of our front-end speech enhance-
ment system, we followed an iterative approach outlined below.

• Iteration 0 (initialization):

1. Train the acoustic models (DNN and SGMM) on clean
TIMIT.

2. Tune the font-end parameters with our proposed tuning
algorithm.

• Iteration 1 and higher:

1. Process simulated noisy TIMIT with our tuned front-
end and generate processed TIMIT utterances.
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Fig. 2. Phone accuracy (in %) for different noise conditions and dif-
ferent tuning parameters for both DNN and SGMM on noisy TIMIT.
SNR is between 0 dB to 30 dB and SER is between−30 dB to 10 dB.

2. Train the acoustic models with a mixture of clean
TIMIT and processed TIMIT utterances.

3. Use the adapted acoustic models to re-tune the front-
end with our proposed tuning algorithm using the
database of clean and processed utterances.

In other words, at iteration 0, the tuning algorithm determines a set
of parameter that output the “cleanest” speech, in order to match
the clean TIMIT database characteristics. Due to the mismatch be-
tween the enhanced speech and the clean acoustic model, further
iterations help reduce this mismatch and improve the ASR perfor-
mance. Regardless of the iteration number, the GA had a population
of M = 40 possible candidates and K = 3 were enough to reach
convergence. These values were chosen empirically by balancing
the complexity and the accuracy of the results.

Figure 2 shows the phone accuracy of the clean TIMIT database,
the unprocessed noisy database, the speech enhancement front-end
tuned with the the Perceptual Objective Listening Quality Assess-
ment (POLQA, [31]) subjective measure [13], and the the speech
enhancement front-end tuned with ASR. The acoustic models were
trained on the clean TIMIT database except for the ASR optimized
system tuned with 1 iteration. The system tuned with ASR outper-
forms the system tuned with POLQA. The phone accuracy on the
clean TIMIT database with a triphone language model were 74.30%
for DNN and 75.26% for SGMM, comparable to the performance re-
ported in [26] and [27], respectively. Figure 2 also shows the phone
accuracy when an iteration in the presented approach is used.

Although used in a different setup, the results obtained with the
proposed method compared favorably to some prior results [32, 33],
where authors investigated joint echo cancellation and speech en-
hancement at higher SERs and SNRs.

5.2. Processing on Real Commands

We used the system to recognize four commands: play, next, back,
pause, as well as a garbage model. In this section two different
scenarios are considered. We first use the set of tuned parameters
for the speech enhancement system from our analysis on the TIMIT
database to study the feasibility of speech recognition on limited vo-
cabulary in extremely challenging conditions and assess the gener-
alization of our tuning approach to unseen data (system trained on
TIMIT but tested on commands). We then conducted another set of
experiments where the tuning of the parameters was done on real
recordings of actual commands.

6 m x 6.5 m x 3.5 m Room

background 
noise

music 
playback

record 
(speech rec.)

1 m

Fig. 3. Experimental setup for voice recording.

5.2.1. Recording of Commands Database

Figure 3 shows the setup for voice recording, where eight subjects
(male/female, native/non-native English speakers) uttered a list of
commands at a distance of 1 meter from the microphone of the Beats
PillTM portable speaker while music was playing. We used eight dif-
ferent music tracks, where the starting point of the track was cho-
sen randomly. Subjects uttered the following commands towards the
speakers: play, next, back, pause. Ambient noise, recorded in a shop-
ping mall containing a mixture of babble and other environmental
noise, was played through separate loudspeakers facing the wall of
the room to simulate diffuse noise. The music playback levels were
set to three different levels: off, medium, and loud. We estimated
that the range of SER for the medium and loud are −35 to −30 dB
and−40 to−35 dB, respectively. The SNR of the ambient noise was
set to 5 to 10 dB for the medium and loud scenarios. There is nei-
ther background noise nor music playback for the clean recordings.
The estimation of the SERs was made possible thanks to a close-
talking microphone that recorded the near-end speech. Furthermore,
we measured the average C-weighted SPL of the music playback at
the microphone to be 92 dBC and 102 dBC for the medium and loud
cases respectively.

5.2.2. Recognition on Noisy Commands

Figure 4 shows the command recognition rates over the four com-
mands for different noise and echo levels, different acoustic models,
and different tuning parameters. The acoustic models in both DNN
and SGMM were both trained using the clean TIMIT database. The
parameters for the POLQA-tuned and ASR-tuned (TIMIT) cases
were the system tuned when the target optimization function was an
objective speech quality metric (POLQA) [15] and the system tuned
when the target was to maximize phone accuracy on noisy TIMIT (as
described in Section 5.1.2), respectively. For the clean commands
the accuracy for both DNN and SGMM was 100%, as expected for
this small command list. The command recognition rate of the close
talk microphone degrades slightly when there was music and back-
ground noise but was still around or above 90% in all cases. For
the Beats PillTM microphone recording during music playback and
background noise, we obtained the best accuracy when the tuning
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was done on a mixture of both medium and loud conditions as in
ASR-tuned (command).

Since the recording condition was not always known in advance,
the command recognition on the mixed condition was also a good
indication of the generalization capacity of our proposed algorithm.
Furthermore, command accuracy from the optimization performed
on TIMIT was within 2% absolute of the results obtained while op-
timizing on commands for the medium level scenario, which was a
good indication of the generalization capacity of our proposed ap-
proach. The accuracy gap was wider between TIMIT-based opti-
mization and the loud-level commands due to a mismatch between
SER and SNR of the simulated TIMIT and loud commands. Our
results also clearly showed that our proposed tuning based on ASR
optimization outperforms the POLQA-based tuning. The difference
in performance seemed to derive from the POLQA optimization be-
ing less aggressive on noise in order to preserve speech quality.

6. CONCLUSION

We proposed a robust ASR front-end and a related tuning method-
ology combined with a state-of-the-art speech recognition systems
(DNN- and SGMM-based). The proposed speech enhancement
front-end consists of a cascaded robust AEC, a residual echo power
estimator based on a double-talk probability estimator, and a quasi-
binary masking that utilizes the classical MMSE-based method at
very low SNRs. The tuning improved the speech recognition rate
substantially on the TIMIT database. The optimized front-end was
then tested in realistic environments for the remote control of a mu-
sic playback device with a limited-sized command dictionary. The
result showed a fairly high recognition rate for voice commands at
a speech-to-music ratio as low as −40 dB and SNR as low as 0 dB,
scenarios hardly seen through the literature. In our experiments,
SGMM outperformed DNN in noisy conditions. However, train-
ing the DNN on a larger corpus can potentially improve recognition
results on DNN. In fact, training the DNN on a larger dataset includ-
ing noisy and clean TIMIT improved the overall recognition rate
of the DNN when our proposed iterative approach was used. We
also showed that training the back-end ASR and tuning our front-
end speech enhancement system in the iterative approach improved
the overall recognition results.
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