A UNIFIED APPROACH TO NUMERICAL AUDITORY SCENE SYNTHESIS USING LOUDSPEAKER ARRAYS

JOSHUA ATKINS, ISMAEL NAWFAL, DANIELE GIACOBELLO

SEPTEMBER 4, 2014

• Spatial sound overview

- <u>Physical Reconstruction</u>: wave-field synthesis (WFS), near-field compensated higher-order ambisonics (NFC-HOA)
 - Issues: not flexible in speaker arrangement, challenging for full-band audio
- Interpolation: vector base amplitude panning (VBAP)
 - Issues: not flexible in speaker arrangement, sources located on surface of array, coloration of sources
- <u>Numerical Optimization</u>: equivalent source method (ESM), mode-matching, crosstalk cancellation
 - Issues: no inclusion of perception, filter design is left as separate problem
- Proposal in this work (<u>Numerical Auditory Scene Synthesis</u>)
 - · Goal: correct reproduction of perceived auditory scene (not wave field)
 - Convex numerical framework: flexible speaker layouts, listener positions, and error-norms
 - Inherently broadband: time-domain filter generation
 - Spatio-temporal projection: include perception, spatial error distribution

PROBLEM STATEMENT

problem: design filters to best approximate response at target locations **assumptions:** 1 source, M target points, S speakers

• <u>reproduction</u>: **y** (signal at target points), **G** (acoustic impulse responses, convolution matrices), **H** (unknown filters, convolution matrices), **x** (signal)

$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_M \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{1,1} & \dots & \mathbf{G}_{1,S} \\ \vdots & \ddots & \vdots \\ \mathbf{G}_{M,1} & \dots & \mathbf{G}_{M,S} \end{bmatrix} \begin{bmatrix} \mathbf{H}_1 \\ \vdots \\ \mathbf{H}_S \end{bmatrix} \mathbf{x}$$

• <u>design</u>: **t** (desired impulse response at target points), **h** (unknown filters)

$$\begin{bmatrix} \mathbf{t}_1 \\ \vdots \\ \mathbf{t}_M \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{1,1} & \cdots & \mathbf{G}_{1,S} \\ \vdots & \ddots & \vdots \\ \mathbf{G}_{M,1} & \cdots & \mathbf{G}_{M,S} \end{bmatrix} \begin{bmatrix} \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_S \end{bmatrix}$$

ACOUSTIC MODELS FLEXIBILITY IN TARGET AND TRANSMISSION MODELS

$$G(f) = Ae^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \xrightarrow{\mathcal{F}^{-1}} g(t) = A\delta\left(\frac{\mathbf{n}\cdot\mathbf{r}}{c} - t\right)$$

• Spherical Wave

$$G(f) = \frac{Ae^{i(kr - \omega t)}}{r} \xrightarrow{\mathcal{F}^{-1}} g(t) = \frac{A}{r}\delta\left(\frac{r}{c} - t\right)$$

- Head-related impulse response (HRIR, BRIR)
- Any other acoustic impulse response

NUMERICAL AUDITORY SCENE SYNTHESIS PROBLEM

FLEXIBLE CONVEX PROGRAM

• **Underdetermined** (S N_h > M N_t, full rank) choose one of many exact solutions:

 $\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \|\mathbf{\Gamma}\mathbf{h}\|_{q} \text{ s.t. } \mathbf{G}\mathbf{h} = \mathbf{t}$

- **Overdetermined** (S $N_h < M N_t$, full rank) and/or uncertainty approximate solution:

$$\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \|\mathbf{W}(\mathbf{Gh} - \mathbf{t})\|_{p} \text{ s. t.} \|\boldsymbol{\Gamma}_{i}\mathbf{h}\|_{q_{i}} \leq \gamma_{i},$$
$$\forall i, i = 1..., I$$

SPATIO-TEMPORAL TRANSFORMS

ALTER SOLUTION SPACE AND/OR FILTER SPECIFICATION

$$\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \|\mathbf{W}(\mathbf{G}\mathbf{h} - \mathbf{t})\|_{p} \text{ s.t.} \|\boldsymbol{\Gamma}_{i}\mathbf{h}\|_{q_{i}} \leq \gamma_{i},$$
$$\forall i, i = 1..., I$$

• Time-frequency transform (DFT, filter banks, and time/frequency weighting, averaging, interpolation)

$$\mathbf{W}_{\mathbf{t}} = \begin{bmatrix} \mathbf{F}_1 & 0 \\ & \ddots & \\ 0 & & \mathbf{F}_M \end{bmatrix} \qquad \qquad \mathbf{F} = \begin{bmatrix} f_{1,1} & \cdots & f_{1,N_t} \\ \vdots & \ddots & \vdots \\ f_{N_f,N_t} & \cdots & f_{N_f,N_t} \end{bmatrix}$$

• Space-wavenumber transform (spherical/cylindrical harmonics and spatial weighting, averaging, ...)

$$\mathbf{W}_{s} = \begin{bmatrix} y_{1,1}\mathbf{I} & \dots & y_{1,M}\mathbf{I} \\ \vdots & \ddots & \vdots \\ y_{C,1}\mathbf{I} & \dots & y_{C,M}\mathbf{I} \end{bmatrix} \qquad \qquad \mathbf{Y} = \begin{bmatrix} y_{1,1} & \dots & y_{1,M} \\ \vdots & \ddots & \vdots \\ y_{C,1} & \dots & y_{C,M} \end{bmatrix}$$

* similar transforms for Γ in paper

NUMERICAL AUDITORY SCENE SYNTHESIS PROBLEM

OPTIONS FOR SYSTEM DESIGN

$$\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \|\mathbf{G}\mathbf{h} - \mathbf{t}\|_2 \text{ s.t.} \|\mathbf{\Gamma}\mathbf{h}\|_q \leq \gamma$$

Which constraint norm, q?Which constraint value, γ?

- spherical wave acoustic model (G, t)
- I_2 -norm error (p = 2)
- DFT projection matrix (Γ)
- filter length = 1024, modeling delay = 100
- 4 systems:
 - unconstrained
 - I₁-norm constraint (q = 1)
 - I₂-norm constraint (q = 2)
 - I_{∞} -norm constraint (q = ∞)

WAVEFIELD AT 500 HZ

 $\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \|\mathbf{G}\mathbf{h} - \mathbf{t}\|_2 \text{ s.t.} \|\mathbf{\Gamma}\mathbf{h}\|_q \leq \gamma$

9 EUSIPCO 2014

6

BROADBAND FILTER RESPONSE, FIXED L2-NORM=39DB FOR ALL CASES

 \mathbf{b}

RESPONSE SIMULATED AT EAR DRUM REFERENCE (TARGET POINTS)

All fail above 1-2 kHz, high frequency coloration

11 EUSIPCO 2014

6

CASE STUDY 2: PERCEPTUAL ERROR TRANSFORM

EXPERIMENTAL SETUP

$$\mathbf{\hat{h}} = \arg\min_{\mathbf{h}} \ \|\mathbf{W}(\mathbf{Gh} - \mathbf{t})\|_2 \ \text{ s. t. } \|\mathbf{\Gamma h}\|_q \leq \gamma$$

Which acoustic model, G?Which error transform, W?Which acoustic target, t?Which constraint transform, Γ?

2/8 control points

- I_2 -norm error (p = 2)
- filter length = 1024, modeling delay = 100
- 3 systems:
 - 8 speakers, HRIR, unconstrained
 - 2 speakers, spherical wave, unconstrained
 - 2 speakers, HRIR, I_∞-norm constraint, ERBspaced DFT (**W**, *Γ*)

CASE STUDY 2: PERCEPTUAL ERROR TRANSFORM

WAVEFIELD (500 HZ), FILTER RESPONSE, AND RESPONSE AT EAR DRUM

IN PRACTICE: SOME EARLY PERCEPTUAL RESULTS

FROM: AES 55TH CONFERENCE ON SPATIAL AUDIO

HRIR target is preferred, multipoint (overdetermined) does better in reverberant scenario

14 EUSIPCO 2014

[1] Ismael Nawfal, Joshua Atkins, Daniele Giacobello, Stephen Nimick. "Perceptual Evaluation of Numerical Auditory Scene Synthesis Using Loudspeaker Arrays." Proceedings of the 55th Convention of the Audio Engineering Society. August 2014.

CONCLUSION

- <u>N</u>umerical <u>A</u>uditory <u>S</u>cene <u>Synthesis</u>
 - Flexible spatial rendering method for generating time-domain broadband filters
 - Can be used with arbitrary loudspeaker arrays
 - Convex program guarantees achievable solution
 - Spatio-temporal transform matrices allow for simple inclusion of perceptual constraints

• Analysis

- Showed effect of filter constraint norm on resulting system
 - easily prefer sparse loudspeaker activations or limit maximum gain applied to loudspeaker array
- Simple perceptual constraints: ERB-spaced transform, HRIR target/acoustic model
 - outperforms spherical wave assumption in objective & subjective tests

