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ABSTRACT

In this paper, we propose a formal methodology for tuning the pa-
rameters of a single-microphone speech enhancement system for
hands-free devices. The tuning problem is formulated as a large-
scale nonlinear programming problem that is solved by a genetic
algorithm to determine the global solution. A conversational speech
database is automatically generated by modeling the interactivity in
telephone conversations, and perceptual objective quality measures
are used as the optimization criteria for the automated tuning over
the generated database. A subjective listening test is then performed
by comparing the automatically tuned system based on objective cri-
teria to the system tuned by expert human listeners. Subjective and
objective evaluation result shows that the proposed automated tuning
methodology greatly improves the enhanced speech quality, poten-
tially saving resources over manual evaluation, speeding up devel-
opment and deployment time, and guiding the algorithmic design.

Index Terms— Acoustic Echo Cancellation, Speech Enhance-
ment, Conversation Analysis, Perceptual Objective Quality.

1. INTRODUCTION

Speech enhancement (SE) algorithms are fundamental to a large
number of speech-centric applications, such as mobile communi-
cation, speech recognition, and hearing aids [1], especially when
the speech signal is corrupted by severe acoustical disturbances [2].
Since designing an algorithm that tries to cover all possible inter-
ferences and user scenarios is often impractical, finding the proper
parameter values in an SE system for a given scenario is critical for
real-world deployment. The system is often hand-tuned by experts
and verified through subjective listening tests. However, the hand-
tuning process is not only time-consuming but also error-prone since
only a relatively small number of user scenarios can be covered.
Very little work has been done to formalize the tuning problem
in SE systems, notably [3], due to the combinatorial nature of the
problem and the related optimization criteria that rely on the fuzzy
concept of perceptually better quality [4]. To get around the sub-
jective and combinatorial nature of the design and tuning problem,
locally optimal or near-optimal solutions are found by considering
one component of the system at a time, and the concept of per-
ceived quality is approximated by measures that are easy to describe
mathematically, e.g., the mean squared error (MSE) or maximum
likelihood (ML) [5]. However, it is well known that these types of
measures, as well as the assumptions behind them, are hardly re-
lated to the auditory system [6], making the tuned solution subopti-
mal. Several methods have been proposed to objectively measure the
perceived quality of speech signals, e.g., [7] and references therein.
The mean opinion score (MOS) is the current standardized measure
which compares a high quality fixed reference to its degraded version
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Fig. 1. Model of the loudspeaker-microphone configuration.

and ranks the result from “inaudible” to “very annoying” on a five-
point scale [8]. This score can be calculated using automated tech-
niques that mimic the human hearing process [9]. The most com-
monly used method is the Perceptual Evaluation of Speech Quality
(PESQ) [10], but its scope is limited to speech codecs evaluation.
A new model called Perceptual Objective Listening Quality Assess-
ment (POLQA) [11] addresses many of the issues and limitations of
PESQ and produces reliable scores for evaluating SE algorithms.

Besides the optimization criteria, constructing a comprehensive
database that covers all possible scenarios is also essential to devel-
oping an effective SE algorithm, and recent works have focused on
providing a common framework to test and evaluate SE algorithms,
e.g., for noise suppression [12] or dereverberation [13]. However, to
the authors’ knowledge, there is currently no database for evaluat-
ing SE algorithms in full-duplex communication, which is the target
of our system. Thus, a full-duplex communication database is often
“handmade” but tailors to only a few scenarios.

In this work, we propose a formal procedure for tuning the
parameters of an SE system for hands-free devices. The system
comprises of an acoustic echo canceler (AEC), a residual echo
power estimator (RPE), a noise power estimator (NPE), a residual
echo suppressor (RES), and a noise suppressor (NS). The tuning
problem is casted as an optimization problem where the cost func-
tion is a perceptual objective measure and the optimization variables
are the parameters of the SE chain, and a genetic algorithm is used
to determine the global solution. For this purpose, a large multi-
condition database is automatically generated by considering the
characteristics of human conversational speech. The database en-
compasses various key factors including room impulse responses
(RIRs), noise types, speakers, echo return losses, and signal-to-
noise ratios (SNRs), to model a real full-duplex communication as
shown in Figure 1. We then compare different objective perceptual
measures as optimization criteria and perform a subjective listening
test on the different outputs obtained.



2. SPEECH ENHANCEMENT ALGORITHM

Let y[n] be the near-end microphone signal, which consists of the
near-end speech s[n] and noise v[n] mixed with the acoustic echo
d[n] = h[n] * z[n], where h[n] is the impulse response of the sys-
tem, x[n] is the far-end reference signal, and = is the convolution
operator. The overall block diagram of the speech enhancement al-
gorithm is shown in Figure 2. The AEC subtracts the linear part of
the echo d[n] while the RES/NS suppresses the nonlinear part of the

residual echo b[n] = d[n] — d[n] and noise v[n].

2.1. Robust Acoustic Echo Canceler

Since strong near-end interference may corrupt the error signal of
the AEC and cause the adaptive filter to diverge, the robust acoustic
echo canceler system [14-16] is used, where a error recovery non-
linearity (ERN) allows for continuous updating. To reduce the delay
of the frequency-domain adaptive filter [17], the multi-delay adap-
tive filter structure [18] is used. The tuning parameters for the AEC
consist of the number of partitioned blocks Magc, the number of it-
erations Nagc, the step-size pagc, and the smoothing factor ccagc for
the power spectral density estimation.

2.2. Residual Echo Power Estimator

A coherence based method similar to [19, 20] is used for the RPE.
The residual echo is modeled as (omitting the frame index m when-
ever necessary for simplicity) B, = AHf X, where AH;, =
[AH[0],..., AHx[Mgpe—1]]T (system distance in the STFT do-
main) and Xy = [Xx[m], ..., Xx[m— Mgee+1]]T for the k™ fre-
quency bin. The system distance can be estimated using a minimum
mean-square error (MMSE) approach [20]:

AH; = E{X} X} } 'E{X} By} = dxx[k]®xp[k]. (1)
Using only the diagonal terms of the autocorrelation matrix ®xx

and the error signal E in place of the true residual echo B, the resid-
ual echo power is estimated by

) @)

where
<i>XE [k, m] = OszE‘i'xE []C, m — 1] + (1 - CXRPE)X;:EIW (3)
dxx[k,m] = aree®xx[k,m — 1] + (1 — ages)| Xi[>. (@)
The tuning parameters for RPE consist of the number of past frames
Mpgpe and the smoothing factor arpg.
2.3. Noise Power Estimator

The low complexity MMSE noise power estimator [21] that implic-
itly accounts for the speech presence probability (SPP) is used for the
NPE. The MMSE estimation of a noisy periodogram under speech
presence uncertainty results in

E{\v[k]|Ex} = P(H1|Ex)Av[k] + P(Ho|Ev)|Ex]?, (5)

where the a posteriori SPP is calculated by
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Fig. 2. Block diagram of the speech enhancement system.

The noise power spectral density is then updated by
Av [k, m] = QNPEAV [k, m — 1] + (1 — CENPE)E{)\V [k]|Ek} 7

To avoid stagnation due to an underestimated noise power, a smooth-
ing is performed

P =apP+ (1—ap)P(Hi|E), 3

and the following ad-hoc procedure is used for the update:

min{P(H1|Ek), PTH}7
P(H1|Ek),

P > PTH,

9
otherwise. ©)

P(H:1|Ek) —{

The tuning parameters for the NPE consist of the fixed a priori SNR
&H, , the threshold Pry, and the smoothing factors a.p and cp.

2.4. Noise Suppressor

The Ephraim and Malah log-spectral amplitude (LSA) MMSE esti-
mator [22] is used for the NS:
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where the a priori SNR &, and the a posteriori SNR ~y, are
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The estimation of the a priori SNR is done using the decision-
directed (DD) approach [23]:

Sk [m—1]]2
P — agpm + (1 — app)max{vyr — 1,0}. (13)

To further reduce the musical noise, the suppression gain is limited
to a certain minimum value Gin:

Sk = [(1 - Gmin)GkSA + Gmin]Ek- (]4)

The tuning parameters of the NS consist of the smoothing factor for
the SNR estimator arpp and the minimum suppression gain Gmin-



3. TUNING AS AN OPTIMIZATION PROBLEM

The tuning problem can be easily formulated as a general optimiza-
tion problem [4], where the objective function to maximize is the
speech quality, or MOS, produced by the SE system. Since most
measures are full-referenced, we calculate the difference in MOS as

AMOS (8[n], y[n]) = MOS (8[n], s[n]) — MOS (y[n], s[n]) .

We can reasonably assume that inequality constraint functions are
linear and univariate. Thus the constraints simplify to determining
the lower and upper bounds for the components of the solution vec-
tor, and our optimization problem becomes:

maximize AMOS (8[n, p], y[n])

15)
subjectto U <p < L.
where p is the vector of parameters that needs tuning, §[n, p] is the
SE system output obtained with p, and L and U represent, respec-
tively, the lower and upper bounds in each element of p. While not
strictly necessary, explicitly defining these bounds in our formula-
tion allows us to obtain faster and more reliable solutions.

Since the objective function is nonlinear and not known to be
convex, there is no effective method for solving (15), e.g., perform-
ing a brute force search with as few as a dozen variables can be
intractable. The general nonlinear programming problem can be
solved by several approaches, each of which involves some compro-
mises [24]. The so-called genetic algorithm has been successfully
applied to this type of non-convex mixed-integer optimization [25].

The basic idea is to apply genetic operators, such as mutation
and crossover, to evolve a set of M solutions, or population, o =
{pgf), m = 1,..., M} in order to find the solution that maximizes
the cost function. This procedure begins with a randomly chosen
population TI®) in the space of the feasible values [L, U] and it is
repeated until a halting criterion is reached after K iterations. The
set of parameters pﬁ,{o € TIU that maximizes the cost function
will be our estimate:

p = argmax AMOS (§[n,p,(f)],y[n]> (16)

pad) ()

4. DATABASE GENERATION

The modeling of human conversational speech and the so-called con-
versational events, such as talk-spurt, pause, mutual silence, and
double-talk, is fundamental to characterizing realistic scenarios in
full-duplex communication. In particular, the studies done in [26]
and [27] had a direct impact on the method for generating artifi-
cial conversational speech presented in [28]. However, this method
is rather simplistic and relies on hand-coded expert knowledge [29],
which is not easily transferable to the automatic generation of a large
conversational speech database.

Several new methodologies have been proposed to model the
turn-taking behaviors, e.g., [30] and references therein. However,
these methodologies are focused on human-machine turn-taking
with very little mutual social interaction. We therefore focus on
older studies on human-human conversations like [27]. In particu-
lar, we propose a flexible model of conversational behavior using a
4-state Markov chain model, where the states correspond to, respec-
tively, mutual silence (MS), near-end (NE) talk, far-end (FE) talk,
and double-talk (DT), and define all the possible combinations of
the components in y[n].
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Fig. 3. Conversational sequence and its Markov chain model.

The Markov chain is uniquely described by its transition matrix
T to model the generation model in [28] and the related distribu-
tions of the conversational events. According to the distribution of
the single talk duration, T's7, the double talk duration, 7', and the
mutual silence duration, Thss, presented in [28], we are able to use
a Markov chain Monte Carlo (MCMC) sampling algorithm [31] to
find the transition matrix T of the 4-state Markov chain. Given that
the transition between active NE and active FE and the transition
between MS and DT are not allowed, and that the transition proba-
bilities of going from MS to NE and MS to FE are equivalent [28],
the Markov chain is uniquely represented by only four parameters:
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This makes it very easy to modify and fit different types of conversa-
tion scenarios with different levels of interactivity [32]. An example
of a sequence of conversational speech and its Markov chain model
is shown in Figure 3.

5. EXPERIMENTAL ANALYSIS

In the experimental evaluation, the optimization framework pre-
sented in Section 3 was used to tune and evaluate the SE algorithm
presented in Section 2. Here we provide details for the method
proposed and the results obtained.

5.1. Setup

The speech databases were generated using the ITU-T P-Series test
signals [33]. This set includes 16 recorded sentences in each of
20 languages and sentences recorded in an anechoic environment,
sampled at 16 kHz. From these, we generated two single-channel
signals, NE and FE, with continuous activity (i.e., without pauses).
The total duration of the speech is about one hour per channel. The
NE and FE speech segments were generated using the Markov chain
presented in Section 4 with p1 = 0.04, p2 = 0.03, ps = 0.05, and
pa = 0.25, generating the same statistical behavior of conversational
events as specified in [28].

A noise database comprised of babble (e.g., airport, cafeteria,
exhibition, and restaurant) noise, white and pink noise, impulsive
noise (e.g., hammering), airplane cabin noise, car noise from a va-
riety of car models, and street noise was used. The RIRs were cal-
culated in office environments using the Audio Precision APx525
log-swept chirp signal through the Beats Pill™ portable speaker and
truncated to the desired length (fs= 48 kHz, resampled at 16 kHz).
A set of 10 RIRs was then chosen with average reverberation time,
RTso, of 0.28 s [34].

In order to generate the NE and FE segments, the starting and
ending points were chosen randomly within the NE and FE channels.



We generated 1000 segments with lengths between 6 to 8 s, ideal for
objective quality measures [10, 11]. The two segments were then
normalized to -26 dBov to avoid clipping, following the ITU-T Rec-
ommendation P.835 [35], and convolved with their respective RIR
with normalized unitary energy. The microphone signal was created
as follows. The NE signal was mixed with the FE signal at signal-to-
echo ratios (SERs) uniformly distributed between -30 and 5 dB. The
scaling was done by calculating the energy of the signals according
to [36]. The noise was then mixed at an SNR uniformly distributed
between -5 to 10 dB, according to the noise and the mixed speech
signal energies [12].

Considering the SE algorithm presented in Section 2 and the
problem in (15), we define the parameter vector as

P = {Magc, Nagc, paEc, @aec, MrpE, QRPE, (18)
&, Pru, ap, anve, app, Gmin

and empirically determine reasonable upper and lower bounds for
each variable. The genetic algorithm had a population of M = 20
possible candidates, and the best N = 4 were migrated to the next
generation. These values were chose empirically balancing com-
plexity and accuracy of the results. Of the remaining sets, half went
through crossover and half went through mutation (uniform mutation
was chosen). The perceptual objective quality measure used was the
average AMOS, as obtained through PESQ [10], POLQA [11], and
the recently introduced ViSQOL [37,38]. We included the manu-
ally tuned system, where the parameters were selected during the
algorithmic design phase as a reference, and obtained four sets of
parameters: PPOLQA > PPESQ; and PvisQoL, and PMANUAL. For compar-
ison, we also optimized the SE system over four traditional objective
measures, averaged over the evaluation set, that do not account for
perception: log-spectral distortion (LSD), true echo return loss en-
hancement (tERLE), MSE, and a combined measure where the AEC
block is optimized first using tERLE, and the RPE, NPE, and NS
blocks are optimized with LSD (with fixed AEC parameters). The
following sets were obtained with proposed optimization method:
PLSD, PtERLE; PMSE, and PtERLE+LSD -

5.2. Results

We divided the database into two parts, where 80% was used to es-
timate the parameters and 20% was used for testing. Table 1 shows
the AMOS calculated using PESQ, POLQA, ViSQOL, and various
traditional objective measures. The results show a net improvement
in MOS over the manually tuned method, which in turn outperforms
all the traditional objective measures. This proves that, in general, a
trained ear is much better at determining proper values for the var-
ious parameters than using only the traditional objective measures,
even if the tuning is done on a limited set. However, the use of
perceptual objective measures for large-scale optimization greatly
improves the performance of the SE algorithm over a much larger
dataset. AMOSpoLqa, arguably the most reliable measure for SE
performance evaluation, shows that pporqa is .358 above pmanuaL
which is remarkable since there is no algorithmic modification other
than using a better perceptual objective measure.

A subjective evaluation was performed through the MUItiple
Stimuli with Hidden Reference and Anchor (MUSHRA) test [39].
We compared the manually tuned configuration pmanuar With the
two configurations obtained with standardized ITU-T tools, prorLga
and ppesg. The anchors were chosen as a 3.5 kHz low-pass fil-
tered version (LP3.5) of the reference signal for scaling, as speci-
fied in [39], and the unprocessed speech, to represent the worst-case

Table 1. Comparison between the objective improvements obtain
with the SE algorithm in terms of MOS calculated with POLQA,
PESQ, and ViSQOL obtained with different sets of parameters as
result of optimizing with different criteria. A 95% confidence inter-
val is given for each value.

method [ AMOSPESQ [ AMOSPQLQA [ AMOSVisQOL
ProLQA A455+.021 .654+.042 .387+.021
PPESQ A475+.035 442+.050 .342+.053
PvisQoL .358+.028 A487+.450 .369+.032
PMANUAL .276+.083 296+.121 .201+.089
PLSD 1394.042 221+.046 .154+.043
PERLE .147+.053 .234+.067 121+.025
PERLE+LSD .194+.061 .246+.049 .173+£.082
PMSE .138+.089 179+.134 1044.091
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Fig. 4. Results of the MUSHRA listening test comparing three dif-
ferent tuning strategies: POLQA-based, PESQ-based, and manual
tuning.

scenario in the listening evaluation. A pool of eleven expert listen-
ers, familiar in detecting small impairments, and seven naive listen-
ers was chosen. The test was performed using six speech excerpts
randomly selected from the testing database. The results shown in
Figure 4 are in line with the objective analysis. In particular, the
confidence interval of the POLQA score only minimally overlaps
with other scores, showing a significant statistical difference. The
high variance of the LP3.5 and manually tuned scores is explained
by the observed bimodality of the distribution of these scores, with
a good percentage of the subjects preferring the bandlimitedness of
the anchor over the manually tuned enhanced speech. Nonetheless,
all subjects consistently preferred the POLQA-based tuning.

6. CONCLUSIONS

We have presented a methodology to tune the parameters of a speech
enhancement system for full-duplex communication. The values of
the parameters are often chosen empirically in the development stage
of the algorithmic design and are most likely suboptimal. We have
shown that optimizing over an objective criterion that embeds as-
pects of human perception works well in determining better solu-
tions to the tuning problem. The MUSHRA test shows a fairly signif-
icant preference over the manually tuned system. Furthermore, using
standardized objective quality measures like PESQ and POLQA, we
see a net increase in MOS, usually not easily obtained without sig-
nificant algorithmic changes. In order to perform the large scale op-
timization, we implemented a method to construct a database which
creates realistic full-duplex communication scenarios. The method-
ology presented is a first step toward a more elegant way to handle
the tuning problem, helping the deployment process, guiding the al-
gorithm development, and highlighting shortcomings of the system.
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