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ABSTRACT

This paper presents a robust acoustic echo cancellation (AEC) sys-
tem in the short-time Fourier transform (STFT) domain using adap-
tive crossband filters. The STFT-domain AEC allows for a sim-
pler system structure compared to the traditional frequency-domain
AEC, which normally requires several applications of the discrete
Fourier transform (DFT) and the inverse DFT, while the robust AEC
(RAEC) allows for continuous and stable filter updates during dou-
ble talk without freezing the adaptive filter. The RAEC and the
STFT-domain AEC have been investigated in the past in separate
studies. In this work we propose a novel algorithm that combines
the advantages of both approaches for robust update of the adap-
tive crossband filters even during double talk. Experimental results
confirm the benefit of incorporating the robustness constraint for the
adaptive crossband filters and show improved performance in terms
of the echo reduction and the predicted sound quality.

Index Terms— Acoustic echo cancellation, adaptive filter,
short-time Fourier transform (STFT), crossband filters, robustness

1. INTRODUCTION

The acoustic echo reduction system, which often consists of an
acoustic echo cancellation (AEC) unit and a residual echo suppres-
sion (RES) unit as shown in Figure 1, is generally required for
hands-free teleconferencing. The AEC unit cancels the linear part
of the echo while the RES unit suppresses the tail or nonlinear part
due to modeling mismatch of the adaptive filter and ambience noise.
Traditionally, a least-mean-square (LMS) algorithm is used for the
adaptation of the filter coefficients. However, the number of filter co-
efficients in the AEC can be several thousands, which increases the
computation cost significantly and slows down the convergence rate.
Frequency-domain adaptive filtering (FDAF) [1] has been proposed
to reduce computational complexity and improve the convergence
rate by taking advantage of the circular convolution property of
the discrete Fourier transform (DFT), where time-domain filtering
is achieved by multiplying frequency-domain coefficients. Large
processing delay may be introduced due to the block processing
nature of the FDAF, especially when the filter length is long. To
reduce this processing delay, the multi-delay filter [2] was proposed
to segment the adaptive filter into smaller blocks. However, the
FDAF-type algorithms still require several applications of the DFT
and the inverse DFT (IDFT) to enforce the gradient constraint.

System identification in the short-time Fourier transform (STFT)
domain has recently been proposed in [3, 4] and applied to the AEC
problem in [5]. Instead of relying on the DFT and the IDFT for the
gradient constraint, a cross-multiplicative transfer function approx-
imation is introduced, where data from adjacent frequency bins are

Fig. 1. An acoustic echo reduction system with an adaptive filter ĥ
for acoustic echo cancellation and a residual echo suppressor.

used for the system identification. Compared to the FDAF-type algo-
rithms, system identification in the STFT domain requires only one
DFT and one IDFT for the analysis and the synthesis, respectively,
of each signal. Furthermore, system identification in the STFT do-
main can be potentially integrated with a RES unit and/or a noise
suppressor unit, which typically operates in the STFT domain [6–8].
However, during double-talk situations, a more traditional approach,
i.e., the use of a double-talk detector (DTD) to freeze the filter adap-
tation, was often used to prevent divergence of the adaptive filter.

A robust acoustic echo cancellation (RAEC) system [9, 10] has
recently been proposed to avoid freezing the adaptive filter during
double talk. The RAEC utilizes the error recovery nonlinearity
(ERN), which “enhances” the filter estimation error prior to the
adaptation, and the noise-robust adaptive step-size [11] with block-
iterative adaptation that enables the recovery of lost convergence
speed due to the aggressive step-size control. Therefore, the RAEC
allows for continuous and stable adaptation of the filter even during
double talk without requiring a DTD. However, the RAEC approach
was previously applied only to the FDAF-type algorithms.

In this paper, we propose a novel algorithm for RAEC in the
STFT domain using adaptive crossband filters. The proposed al-
gorithm uses the STFT-domain AEC framework and incorporates
components from the RAEC algorithm to allow for robust update
of the adaptive crossband filters during double talk. Even though
the processing is done in the frequency domain, traditional FDAF-
type algorithms eventually output a time-domain signal that has to
be transformed again to the STFT domain for subsequent nonlinear
processing, i.e., RES and noise suppression. The STFT-domain AEC
framework has the advantage of a unified system architecture when
combining both the AEC and the RES into a single STFT-domain
processing framework, while the RAEC components enforce robust-
ness of the algorithm under noisy conditions without a DTD.

This paper is organized as follows. We review the STFT-domain
AEC with adaptive crossband filters in Section 2. The STFT-domain
RAEC is proposed in Section 3. Experimental evaluation and the
conclusion are discussed in Section 4 and 5.



2. PROBLEM BACKGROUND

2.1. Short-Time Fourier Transform Domain Processing

The STFT-domain processing framework can be formulated as fol-
lows. Given a signal x[n], the signal is transformed to the STFT
domain by

Xk[m] =

N−1∑
n=0

x[n+mR]wA[n]ωknN ,

where k is the frequency index,m is the frame index,N is the frame
size, R is the frame shift size, wA[n] is an analysis window of size
N , and ωN ≡ exp(−j 2π

N
). The frequency-domain coefficients can

be synthesized back by applying the inverse STFT (ISTFT)

x[n] =
∑
m

N−1∑
k=0

Xk[m]wS [n−mR]ω
−k(n−mR)
N ,

where wS [n] is a synthesis window. For perfect reconstruction of
the signal x[n], the analysis and synthesis windows must satisfy the
so-called completeness condition, i.e.,∑

m

wA[n+mR]wS [n+mR] = 1, ∀n.

2.2. Acoustic Echo Cancellation with Crossband Filters

A single-channel AEC system operating in the STFT domain is
shown in Figure 2. Let y[n] be the near-end microphone signal,
which consists of the near-end speech and/or noise v[n] mixed with
the acoustic echo d[n] = h[n] ∗ x[n], where h[n] is the impulse re-
sponse of the system, x[n] is the far-end reference signal, and ∗ is the
convolution operator. Let x[m] = [x[mR], . . . , x[mR + N − 1]]T

be themth reference signal vector, wA = [wA[0], . . . , wA[N −1]]T

be the analysis window vector, (F)k+1,n+1 = ωknN , k, n =
0, . . . , N − 1 be the N × N discrete Fourier transform (DFT)
matrix, and x[m] = F(wA ◦ x[m]) = [X0[m], . . . , XN−1[m]]T

be the DFT of the windowed reference signal vector, where ◦ is the
Hadamard (element-wise) product operator and { · }T is the trans-
pose operator. The acoustic echo signal can be modeled in the STFT
domain as [3]

d[m] =

M−1∑
i=0

Hi[m− 1]x[m− i], (1)

where d[m] is the DFT of the mth frame echo signal, Hi is the ith

impulse response matrix, and M is the filter length in the STFT do-
main. If the impulse response matrix is diagonal, (1) reduces to the
multiplicative transfer function approximation [4] which may not be
accurate due to the finite analysis window length. The modeling
accuracy can be improved by adding 2K cross-terms, or 2K off-
diagonal bands, around the main diagonal terms of H without sig-
nificantly increasing the computational complexity.

Let Ĥ be the adaptive filter matrix using 2K+1 diagonal bands.
The estimated echo can be written as d̂[m] =

∑M−1
i=0 Ĥi[m −

1]x[m− i], and the adaptive filter matrix can be updated using

Ĥi[m] = Ĥi[m− 1] + G ◦∆Ĥi[m], i = 0, . . . ,M − 1,

where ∆Ĥi[m] is an update matrix for the filter coefficients matrix
and G =

∑K
k=−K Pk is a matrix that selects the 2K + 1 diagonal

Fig. 2. The STFT-domain AEC, where the STFT block represents
windowing and transforming to the frequency domain. Note that a
RES block, omitted here for simplicity, can potentially be inserted
before the ISTFT for combined AEC and RES in the STFT domain.

bands with P being a permutation matrix defined as

P ≡
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0
. . .

. . .
...
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. . .
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0 . . . 0 1 0

 .

The matrix G limits the number of crossband filters that are use-
ful for system identification in the STFT domain since increasing
the number of crossband filters does not necessarily imply a lower
steady-state error [3, 5].

The update matrix based on the LMS algorithm is given by

∆ĤLMS
i [m] = µe[m]xH[m− i], (2)

where e[m] = y[m] − d̂[m] is the error signal vector in the STFT
domain, µ > 0 is a step-size, and { · }H is the Hermitian transpose
operator. Instead of using only the diagonal terms, which is normally
done in the FDAF-type algorithms, (2) takes into account the con-
tribution of the cross-frequency components of the reference signal
without relying on the DFT and the IDFT for canceling the aliased
components, allowing for a simplified system architecture. Detailed
analysis of acoustic echo cancellation with adaptive crossband filters
using the LMS algorithm can be found in [5].

We note that in the presence of near-end speech/noise v[n], the
error signal vector is given by

e[m] = v[m] + d[m]− d̂[m] = v[m] + b[m], (3)

where v[m] and b[m] is the noise vector and the noise-free error sig-
nal vector, respectively, in the STFT domain. Since the error signal
vector e[m] deviates from the true, noise-free, residual echo signal
vector b[m], the adaptive filter may diverge from the optimal solu-
tion due to the near-end interference, in which case a DTD is often
required to freeze the adaptation of the filter and may lead to subop-
timal AEC performance.

3. PROPOSED ALGORITHM

3.1. Robust Acoustic Echo Cancellation

The RAEC system [9, 10] has recently been proposed to allow for
robust update of the adaptive filter coefficients even under heavy



near-end interference. The RAEC utilizes ERN, which tries to re-
cover the true error signal prior to the adaptive filter update and can
be expressed as a nonlinear clipping function [12], i.e.,

φ(Ek[m]) =

{
Tk[m]
|Ek[m]|Ek[m], |Ek[m]| ≥ Tk[m],

Ek[m], otherwise,
(4)

that limits the error signal when its magnitude is above a certain
threshold Tk[m]. The threshold is estimated based on the near-end
signal statistics and is approximated by Tk[m] =

√
See,k[m] with

See,k[m] ≡ E{|Ek[m]|2} ≈ βSee,k[m− 1] + (1− β)|Ek[m]|2,

where See,k[m] is the power spectral density (PSD) of the error sig-
nal, E{ · } is the expectation operator, and 0� β < 1 is a forgetting
factor. The nonlinear clipping function (4) is one of the several non-
linear functions investigated in [10] that gives the best performance,
where the residual echo signal b[n] and the near-end signal v[n] are
assumed to be Gaussian distributed and Laplace distributed, respec-
tively. Detailed discussion of the convergence behavior with differ-
ent choices of nonlinearity functions under different signal model
assumptions can be found in [10, 13, 14].

The regularization parameter plays an important role in adaptive
algorithms [15]. Without good regularization, an adaptive algorithm
may not behave properly under noisy conditions. A fixed regulariza-
tion term is traditionally applied to the step-size of the normalized
LMS (NLMS) algorithm to stabilize the filter update

µNLMS
k [m] = µ

1

Sxx,k[m] + δ
, (5)

where δ is the fixed regularization term. In conjunction with the
ERN, the RAEC incorporates a noise-robust adaptive step-size from
[11] that is given in the frequency domain as [9]

µk[m] = µ
Sxx,k[m]

S2
xx,k[m] + γS2

ee,k[m]
= µ

1

Sxx,k[m] + δk[m]
, (6)

where γ is a tuning parameter and δk[m] = γ
S2
ee,k[m]

Sxx,k[m]
is a

frequency-dependent regularization term. The adaptive step-size
in (6), similar in form to (5), can be viewed as using the frequency-
dependent regularization term that scales down the step-size auto-
matically when the near-end signal v[n] is large. Detailed imple-
mentation of the RAEC system and its improved version through the
system approach can be found in [9, 10, 12].

3.2. Robust Adaptive Crossband Filters

The application of ERN to the STFT-domain AEC is straightforward
since the function of ERN is to limit the effect of noise on the true
error signal. From (3) we note that the error enhancement procedure
is not changed in the STFT domain since the near-end interference
is still additive in the STFT domain regardless of the echo cancel-
lation framework. The additive noise assumption is often seen in
the signal enhancement community. All derivation of the ERNs, or
noise-suppressing nonlinearities, in [10] is still valid in the STFT-
domain processing framework, where the nonlinearity is applied to
the error signal in each frequency bin. No cross-frequency compo-
nent of the error signal needs to be considered when applying the
ERN to the update of the adaptive crossband filters.

Application of the noise-robust adaptive step-size to the STFT-
domain AEC is more complicated since the step-size in (6) depends
on the PSDs of both the reference signal and the error signal. To

simplify the problem, we first consider the step-size for the NLMS
algorithm in (5), which can be written in the vector form as

n[m] = (sxx[m] + δ1N×1)◦(−1),

where { · }◦(−1) is the Hadamard (element-wise) inverse opera-
tor, 1N×1 = [1, . . . , 1]T, and sxx[m] = E{x[m] ◦ x∗[m]} ≡
[Sxx,0[m], . . . , Sxx,N−1[m]]T is the PSD vector of the reference
signal with { · }∗ being the element-wise complex conjugate opera-
tor. The LMS update matrix in (2) can be rewritten for the NLMS
update as

∆ĤNLMS
i [m] = µe[m](n[m] ◦ x[m− i])H, (7)

where the reference signal is normalized by its signal power before
being multiplied by the error signal. Note that each element of the
NLMS update matrix in (7) is given by

(∆ĤNLMS
i [m])k+1,l+1 = µ

Ek[m]X∗l [m− i]
Sxx,l[m] + δ

. (8)

Given (5), (6), and (8), the extension of the noise-robust adap-
tive step-size to the STFT-domain crossband filters can be viewed as
adding a cross-frequency dependent regularization term δk,l[m] =

γ
S2
ee,k[m]

Sxx,l[m]
instead of the fixed regularization in (8), and the update

can be modified as (with the ERN applied)

(∆Ĥi[m])k+1,l+1 = µ
φ(Ek[m])X∗l [m− i]
Sxx,l[m] + δk,l[m]

.

Therefore, we propose the noise-robust adaptive step-size for the
STFT-domain AEC in the matrix form as

(M[m])k+1,l+1 =
Sxx,l[m]

S2
xx,l[m] + γS2

ee,k[m]
,

and the update matrix for the STFT-domain RAEC is given by

∆Ĥi[m] = µM[m] ◦ {φ(e[m])xH[m− i]},

where φ(e[m]) ≡ [φ(E0[m]), . . . , φ(EN−1[m])]T is the estimate
of the true error signal vector after applying ERN. The proposed
STFT-domain RAEC algorithm with adaptive crossband filters is
summarized in Table 1.

4. EXPERIMENTAL EVALUATION

The impulse responses were measured through two Beats PillTM

speakers that were spaced 1 meter apart. The sound pressure level
(SPL) of the two speakers were calibrated to 85 dBC at 1 meter away
with a −20 dBFS narrowband (500 Hz to 2 kHz) pink noise. One
of the speakers was used for playing the near-end speech while the
other one playing the far-end speech. The microphone was placed
closely to the original microphone position of one of the speakers
to measure the room impulse response h and the impulse response
from the other speaker to the microphone. With the measured im-
pulse response, the SPL of the echo signal was about 20 dB stronger
than the near-end speech.

Speech files and noise files from the ITU-T P.501 test signals
[16] were randomly selected for the near-end speech plus noise and
the far-end speech to generate the database for our experiment. The
noise was added to the near-end speech with a segmental signal-to-
noise ratio (SSNR) of −5, 0, 5, and 10 dB. The near-end speech
plus noise and the far-end speech were constantly overlapped from



Table 1. RAEC in the STFT domain with adaptive crossband filters.
Definitions

(F)k+1,n+1 = ω
kn
N ≡ e−j

2π
N
kn
, k, n = 0, . . . , N − 1

G =

K∑
k=−K

P
k
, P ≡

[
01×N−1 1

IN−1×N−1 0N−1×1

]
φ(e[m]) ≡ [φ(E0[m]), . . . , φ(EN−1[m])]

T

Echo cancellation

x[m] = F(wA ◦ [x[mR], . . . , x[mR +N − 1]]
T

)

y[m] = F(wA ◦ [y[mR], . . . , y[mR +N − 1]]
T

)

e[m] = y[m]−
M−1∑
i=0

Ĥi[m− 1]x[m− i]

Filter adaptation

sxx[m] = βsxx[m− 1] + (1− β)(x[m] ◦ x∗[m])

see[m] = βsee[m− 1] + (1− β)(e[m] ◦ e∗[m])

φ(Ek[m]) =


√
See,k[m]

|Ek[m]| Ek[m], |Ek[m]| ≥
√
See,k[m]

Ek[m], otherwise

(M[m])k+1,l+1 =
Sxx,l[m]

S2
xx,l[m] + γS2

ee,k[m]
, k, l = 0, . . . , N − 1

∆Ĥi[m] = µM[m] ◦ {φ(e[m])x
H

[m− i]}, i = 0, . . . ,M − 1

Ĥi[m] = Ĥi[m− 1] + G ◦∆Ĥi[m], i = 0, . . . ,M − 1

the very beginning to simulate the continuous double-talk scenario.
100 utterances were generated for the simulation with an averaged
length of about 40 seconds for each utterance.

The frame size of the STFT was N = 256 samples with a
50% overlap. The analysis and synthesis windows were chosen to
be the square root of a Hann window. The parameters for the STFT-
domain RAEC were chosen to be M = 10, β = 0.98, and γ = 1,
µ = 0.03/(1 + K), where K = 0, 1, 2, 4. To compare the echo
cancellation performance with and without the robustness constraint,
the traditional NLMS step-size (5) without ERN was also used. The
regularization parameter for the NLMS step-size was δ = 10−6.

Figure 3 shows a box plot of the mean opinion score (MOS)
measured by the Perceptual Evaluation of Speech Quality (PESQ)
[17]. Evaluation was done using the last 10 seconds to ensure
the adaptive filters were stabilized. To evaluate the AEC perfor-
mance only, no noise suppression was applied, and all processed
signals were compared to the clean near-end speech signal. The
label “None” represents the microphone signal itself without any
processing. The label “CB” represents the crossband filters with
the traditional NLMS update, and the number appended at the end
of each label represents K. Similarly, the label “R” represents
the RAEC in the STFT domain. In general, the mean and me-
dian MOS’s with the robustness contraint outperform the traditional
NLMS update with a fixed regularization term. We observe that with
increasing number of crossbands, the MOS of the traditional NLMS
decreases while that of the RAEC increases. We note that the RAEC
performs the best around K = 2, which is consistent with [5] where
it was found that increasing the cross-terms past the optimal value
degrades the AEC performance. A similar evaluation using the Per-
ceptual Objective Listening Quality Assessment (POLQA) [18] was
also conducted with similar results to the PESQ.

Figure 4 shows the true echo return loss enhancement (TERLE)
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Fig. 3. MOS results using PESQ.
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Fig. 4. TERLE plot comparing the STFT-domain AEC with and
without the robustness constraint.

obtained from one of the utterances processed with R2, CB0, and
CB2, as well as the microphone signal and the near-end speech plus
noise signal with −5 dB SSNR. R2 and CB0 were compared since
they were the best performing settings for the STFT-domain AEC
with and without the robustness constraint, respectively. The TERLE
is defined as

TERLE (dB) ≡ 10 log10

(∑
n|y[n]− v[n]|2∑
n|e[n]− v[n]|2

)
,

i.e., the ERLE measured after the near-end speech and noise are
subtracted from both the microphone signal and the error signal.
We note that with more crossbands, the initial convergence rate is
slightly slower than the one without any crossband filter, as reported
in [5]. However, the steady-state performance of R2 is much better
than CB0, providing as much as 15 dB more echo reduction. We
note that while CB2 is still able to cancel the echo in the begin-
ning, the TERLE fluctuates throughout the utterance and decreases
dramatically after 30 seconds, indicating that the adaptive crossband
filters are diverging during double talk. R2 on the other hand pro-
vides much stabler TERLE.

5. CONCLUSION (RELATION TO PRIOR WORK)

The STFT-domain AEC framework [3–5] provides an alternative to
the traditional FDAF algorithms [1, 2] and has the potential to sim-
plify the system architecture when combined with RES [6–8]. On
the other hand the robustness constraint [9–14] stabilizes the adap-
tive filter update of the traditional FDAF algorithms without the re-
quirement of a DTD. We present in this paper a novel algorithm that
combines the advantages of both the simplicity of the STFT-domain
AEC framework and the robustness constraint for the adaptive cross-
band filter update even during continuous double talk. By correctly
modifying the update equation for the adaptive crossband filters, we
achieve superior echo reduction and stabler steady-state performance
as verified by TERLE and PESQ.
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