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ABSTRACT

In this work, we propose an optimization framework for tuning the
parameters of a speech enhancement system to maximize its perfor-
mance while constraining its computational complexity imposed by
a target platform. Some parameters allow for enabling or disabling
certain algorithmic components of the system, effectively guiding
the implementation effort. The speech enhancement system is de-
ployed in a speech recognition front-end and in a full-duplex tele-
phony system. The optimization variables are the parameters of the
system and the performance is measured using phone accuracy rate
and mean opinion score, respectively. The problem is then a nonlin-
ear program of combinatorial nature which is solved efficiently using
a genetic algorithm. The results show improvement in performance
over common tuning and implementation strategies.

1. INTRODUCTION

Speech enhancement (SE) algorithms are fundamental to most
speech-centric applications due to a plethora of acoustical distur-
bances that degrade the captured speech signals [1]. The research
and development effort in designing SE systems aims at integrating
different algorithms and maximizing the performance using objec-
tive measures [2]. When the SE systems are used in full-duplex
speech communications, the objective is to maximize the perceptual
quality using the mean opinion score (MOS) [3], which can be cal-
culated using automated techniques that mimic the human hearing
process [4]. The current ITU-T standardized model is the Perceptual
Objective Listening Quality Assessment (POLQA) [5], which pro-
duces reliable scores for evaluating SE algorithms and overcomes
several limitations of its predecessor, the Perceptual Evaluation of
Speech Quality (PESQ) [6]. When SE systems are used as a pre-
processor for automatic speech recognition (ASR), the objective
of the algorithmic design is to maximize the speech recognition
accuracy [7]. While model-domain enhancement methods have
been shown to better account for the mismatch between the training
condition and the application scenario [8], methods relying on fixed
acoustic models using the hidden Markov models (HMMs) are still
the most common methods for limited-vocabulary recognition on
embedded systems [9]. Therefore, these methods rely heavily on
the SE algorithms to enhance the speech signals before feature ex-
traction to match the training condition of the ASR [10]. Accurate
ways to assess ASR reliability are still a matter of debate since they
are heavily application and context dependent [11]. However, for
embedded systems, the phone accuracy rate (PAR), or at a higher se-
mantic level the word accuracy rate (WAR), is generally appropriate
as a performance measure for the ASR.

During development and prototyping, a commercially viable SE
system must take into account the constraints of the target platform

[12]. For audio related applications, field-programmable gate arrays
(FPGASs) [13] and dedicated digital signal processors (DSPs) are the
most common choices since they generally have lower cost, lower
latency, and lower energy consumption [14]. However, meeting the
computational budget of the target hardware, commonly measured
in terms of million cycles per second (MCPS), is generally a non-
negotiable condition [15]. The computational complexity of an algo-
rithm is calculated by counting the number of basic mathematical op-
erations, e.g., multiplications, additions, or multiply-accumulations
(MAC:s), as well as the usage of pre-defined, highly-optimized sub-
routines already embedded in the processor, e.g., the fast Fourier
transforms (FFTs) [16].

The objective of maximizing the perceptual quality or the speech
recognition accuracy often contradicts the computational constraints
imposed by the target platform. While profiling each component of
a SE system during development is a good practice to avoid overly
complex solutions, the funing of the system is often done at an ad-
vanced stage of the development and may influence the computa-
tional complexity dramatically. Furthermore, the optimization often
relies on measures that are easier to handle mathematically, e.g., the
mean-squared error (MSE) or the log-spectral distortion (LSD) [2],
but may not relate well to the actual goal of the system, i.e., max-
imizing the perceptual quality or the speech recognition accuracy.
In our recent works [17, 18], we formalized the tuning of a SE sys-
tem for full-duplex communications by casting it as an optimization
problem, where the objective function was a perceptual objective
measure and the optimization variables were its parameters. The
work was then extended to the optimization of a ASR front-end [19],
where the objective function was the back-end recognizer accuracy.
Similar ideas were used in [20] and in [21], to tune the parameters
of a noise reduction system and the parameters of a ASR back-end,
respectively.

In previous works, however, the optimization problem was un-
constrained. Thus any solution satisfying the maximization of the
perceptual objective quality or recognition accuracy could be the so-
lution to our problem. In this work, a nonlinear penalty function
accounting for the computational complexity is introduced in the op-
timization framework. The system to be optimized is comprised of
several algorithmic blocks and two large databases of conversational
speech, derived from the TIMIT database [22], that cover a wide
range of scenarios which are used for training and testing. The sys-
tem is then optimized for either full-duplex communications or an
ASR front-end with the computational complexity constraint speci-
fied in terms of MCPS.

2. SPEECH ENHANCEMENT ALGORITHM

Let y[n] be the near-end microphone signal, which consists of the
near-end speech s[n] and noise v[n] mixed with the acoustic echo
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Fig. 1. A block diagram of the speech enhancement system.

d[n] = h[n] * z[n], where h[n] is the impulse response of the
system, x[n] is the far-end reference signal, and * is the convolu-
tion operator. The overall block diagram of the speech enhance-
ment algorithm is shown in Figure 1, which consists of two robust
acoustic echo cancelers (RAECs), a double-talk probability (DTP)
estimator, two residual power estimators (RPEs), a noise power es-
timator (NPE), and a combined noise suppressor (NS) and binary
mask. The error signal before the adaptive filter update is epi[n],
while e1[n] and ez[n] are the error signals after the filter update.
The noise power estimate and the residual echo power estimate of
the m™ frame in the ™ frequency bin are Ay x[m] and Ap x[m],
respectively.

Here we briefly describe the parameters and the computational
complexity of the system. A more detailed discussion of the whole
system can be found in [19]. The tuning parameters for each of the
RAEC:s consist of the frame size Nrarc, the number of partitioned
blocks Mrakc, the number of iterations Njer, the step-size prarc,
the tuning parameter yragc for the robust adaptive step-size, and
the smoothing factor ararc for the power spectral density estima-
tion. The tuning parameters for the DTP consists of the transition
probabilities ao1, a10, bo1, and b1, the smoothing factors aprp and
Bore, the frequency bin range [Kvegin, kend], the frame duration Tprp,
and the adaptation time constants 7. The tuning parameters for the
RPE consist of the numbers of partitions Mgpg,, and Mgpg; to cal-
culate the coherence and the smoothing factors arpgy and agpg, for
the power spectral density estimation. The tuning parameters of the
NPE consist of the fixed a priori speech-to-noise ratio (SNR) &x,,
the threshold Pry, and the smoothing factors aup and anpe The tun-
ing parameters of the the NS consist of the smoothing factor for the
SNR estimator app. The tuning parameters for the direct masking
consist of the minimum gain Gmin, the SNR thresholds 6; and 62, the
tuning parameter o, and a binary variable by, that choses the type of
masking applied (based on [25] or quasi-binary [19]).

Table 1 shows the computational complexity per sample for each
block, where “mply” stands for multiplication, “add” stands for ad-
dition, “sqrt” stands for square root, “if-else” stands for the if-else
statement, “div” stands for division, “log” stands for the logarithm
function, “exp” stands for the exponential function, “MAC” stands
for multiply-accumulation, “cplx” stands for complex number, and
“pwrSpectr” stands for the square of the magnitude of a complex
number. Eventually, the actual complexity is platform dependent,
but each of the fundamental operations, such as the FFT, can be es-
timated in terms of DSP cycles, which in turn allows us to estimate
the computation on an actual platform in terms of MCPS. Note that
FFTraec and FFTster represent the FFT cost per sample by dividing
the FFT cost by its block size. Also note that some of the tuning
parameters, such as the number of partitioned blocks Mgarc and
Mpgpg, the 2NRAEc-pOiIlt FFT of the RAEC, the NSTFT-pOil‘lt FFT of

Table 1. The computational complexity per sample for each block.

Caec = (3Nier + 2)-FFTragce + (5Nier + 3)-mply + (3Nier + 1)-MAC
+ (2Niter + 1)-cplx-pwrSpectr + (2Njer + 1) Mragc-cplx-mply
+ Nier(Mragc + 1)-add + Niger-sqrt + 2 Nier-div + Niyer-if-else
+ Niter MraEC-Teal-cplx-mply
Cster = 2-mply + FFTster
Cptp = 3-cplx-pwrSpectr + 18-mply + 12-MAC + 1-cplx-mply + 6-div
+ 9-add + 1-exp + 1-sqrt + 1-log
Creg = 1-cplx-pwrSpectr + 4-mply + 3-MAC + (Mree + 1)-cplx-mply
+ (Mgpg + 1)-add + 1-div
Cnpe = 1-cplx-pwrSpectr 4+ 3-div + 3-add + 5-mply + 1-exp + 3-MAC
+ 2-if-else
Cns = 2-cplx-pwrSpectr 4 2-add + 1-if-else + 3-mply + 2-MAC + 3-div

the short time Fourier transform (STFT) block, and the number of it-
erations Nier, will influence directly the complexity. Given the com-
putational complexity of each block, the total computational com-
plexity in terms of MCPS is given by

C(p) = (Cragec, + Cragc, + 7Cster + Core

s
106

where p is the vector of optimization parameters and f is the sam-
pling rate. Additionally, there is an on-off flag to either turn on or
off the second RAEC block to determine whether using the cascaded
structure of two RAEC blocks or running only one RAEC block for
a higher number of iterations is more beneficial.

+ Cregy + Creg, + Chpe + Chis) [MCPS], (1)

3. OPTIMIZATION FRAMEWORK

3.1. Optimization problem

The SE system tuning can be formulated mathematically as a con-
strained optimization problem. Let §[n, p| be the SE system output
obtained with p, the problem can be written as:

Q(38[n, p)),
subjectto  C(p) < Crnax, 2

maximize

where Q ( -) is the optimization criterion and Chax is the computa-
tional complexity constraint. Additionally, we can define L and U
as the lower and upper bounds of p, i.e., L < p < U. Since the
objective function is nonlinear and not known to be convex, there
is no effective method for solving (2). However, the nonlinear pro-
gramming problem can still be solved by several approaches, each
of which involves some compromises [26].

3.2. Optimization algorithm

The genetic algorithms (GAs) have been successfully applied to
this type of non-convex mixed-integer optimization problems [27].
The basic idea is to apply genetic operators, such as mutation and
crossover, to evolve a set of initial solutions, or population, in order
to find the solution that maximizes the objective function. The key
element of this evolutionary process for dealing with the nonlinear
constraints is the so-called tournament selections, which allow for
several random pairwise comparisons between sets of parameters
and quickly determine the boundary of the feasible region [28]. The
various steps of the algorithm are outlined below.



Step 1 - An initial population of M solutions is first generated by
randomly choosing the values of each set from the feasible region
p£2> ~ U (L,U). As a general remark, the feasible region deter-
mined by the bounds in (2) is larger than the one allowed by the con-
straint, e.g., the complexity of the U solution might be much higher
than Chax. However, a methodology will be used in the evolutionary
process to enforce the feasibility of the solution.

Step 2 - The sets that go through crossover or mutation are chosen
in a series of tournament selections: a random parameter set w is
extracted from the population, 2 < II%®), and the set pﬁ,]f) e Q
with the best Q(5[n, pgf)]) is then selected. A constraint is imposed
in the pairwise comparison of the tournament selection by making
sure that when a feasible and an infeasible solutions are compared,
the feasible one is chosen, and when two infeasible solutions are
compared, the one with smaller constraint violation is chosen [28].
Crossover - This operator allows to combine two sets of parameters
with good but not optimum values of their objective function from a
previous generation, pglk)7 pl(k) eI, through a random weighted
mean:

B — o p)=gopP + 1-8)0op™, 3)

where 3 ~ 1£(0,1) and ® denotes element-wise multiplication.
Mutation - The mutation pgf“) = \I/(pgzk)) of the set of values
prevents choosing all elements in the population from a local mini-
mum. Different heuristic approaches can be used, often associated
with the type of the problem [29,30]. The uniform perturbation is
a simple operator that replaces the value of a I"™ element with a uni-
form random value selected between the upper and lower bounds:
U, () =6, §~U(L,UY). 4)

Step 3 - When a halting criterion is reached, the set of parameters
that maximizes the objective function will be our solution:

b= argmax Q (3[n,pl"]) st. CRLY) < Coae (9)

pH)ern(K)

Note that, given that not necessarily all the solutions in the K™ gen-
eration might fall within the feasible region [28], we choose the best
solution that respects the constraint.

4. EXPERIMENTAL ANALYSIS

4.1. Dataset Generation

A key element to any data driven approach is to have a large and well
structured amount of data for training and testing that correlates well
to real world scenarios. To properly optimize and evaluate the SE
system, two conversational speech databases were generated using
the TIMIT database [22] for training and testing. We used the stud-
ies presented in [31] and formalized in the ITU-T P.59 standard [32]
to generate a full-duplex conversational database composed by near-
end (NE) and far-end (FE) speech signals by determining the dura-
tion and pattern of talk-spurt (TS), pause (PAU), double-talk (DT),
and mutual silence (MS).

An instance of the database was created as follows. We concate-
nated two sentences, randomly chosen without replacement from a
total of 6,300 TIMIT sentences to form the NE speech. We then ex-
tracted their voice activity from their phonetic transcription (given on
a sample by sample basis) to determine the durations of the speech
and non-speech parts. Since the TIMIT sentences have little non-
speech sections, we randomly zero-padded the beginning and the end
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Fig. 2. Example of a conversational speech sequence.

of the concatenated speech file as well as between the two TIMIT
sentences so that the speech activity had a uniform duration distribu-
tion between 30% to 45% and the non-speech probability between
55% to 70%, in line with the studies on conversational speech pre-
sented in [31].

The FE speech pattern was generated using a 2-state Markov
chain which is a collapsed version of the 4-state Markov chain used
in [18], given that the NE pattern is already given. In particular,
from the FE side, MS coincides with NE, creating a PAU state,
and DT coincides with FE itself, creating a TS state. We tuned the
transition probabilities in the transition matrix of the Markov chain
to match the above mentioned statistics of the NE speech using a
Markov chain Monte Carlo sampling algorithm [33]. The FE speech
database was generated by concatenating and removing pauses from
the ITU-T P-Series [34]. Once the on-off speech pattern of the FE
was created, we randomly chose the starting and ending point in the
FE channel, and then we overlapped it with the NE. Given that cer-
tain transitions are not allowed in the conversational model [32], we
ran several instances of the Markov chain until the DT probability
ranges from 7% to 17%, the MS probability from 20% to 30%, and
no DT-MS and NE-FE transitions occurred. An example of the pat-
tern of conversational events is shown in Figure 2.

A noise database comprising of babble noise (e.g., airport, cafe-
teria, exhibition, and restaurant), white and pink noise, impulsive
noise (e.g., hammering), airplane cabin noise, car noise from a va-
riety of car models, and street noise was used. The room impulse
responses (RIRs) were calculated in office environments using the
Audio Precision APx525 log-swept chirp signal through the Beats
Pill™ portable speaker and truncated to the desired length. A set of
10 RIRs was then chosen with an average reverberation time RTgo
=0.28 s. The 3,150 NE and FE segments were then normalized to
-26 dBov to avoid clipping by following the ITU-T Recommenda-
tion P.835 [35], and convolved with their respective RIR with nor-
malized unitary energy. The NE signal was mixed with the FE sig-
nal at speech-to-echo ratio (SER) uniformly distributed between -30
and 5 dB. The scaling was done by calculating the energy of the
signals according to [36]. The noise was then mixed at an SNR uni-
formly distributed between -5 to 10 dB, according to the noise and
the mixed speech signal energies [37]. The choices of RIRs, SER,
and SNR were considered empirically appropriate given the possible
usage scenarios for a portable teleconferencing device.

4.2. Objective Functions

For the full-duplex communication scenario, we used the stan-
dardized POLQA [5] to measure the improvement in MOS. Since
POLQA is a full-referenced measurement system, our objective
function is the difference in MOS compared to a clean reference,
i.c.. Q (3[n, p]) = AMOS (3[n], y[n]) 181,

For the ASR front-end scenario, the capability of the recognizer



were examined by measuring its accuracy in recognizing phones,
the building blocks of words and utterances [38], through PAR. We
used the HTK toolkit [39] to train an acoustic model composed of
61 phones [22]. A set of 13 Mel-frequency cepstral coefficients
(MFCCs) with their first and second derivatives, for a total of 39
coefficients, were generated and used as features for our experimen-
tal analysis. We used a 5-state HMM with an 8-mixture Gaussian
mixture model (GMM) for each phone, a fairly standard setup [38].
We normalized the mean of the MFCCs as suggested in [40] for the
proper application of the direct masking. We trained our HMMs with
clean speech only to focus only on the SE capabilities.

4.3. Optimization Process

For the optimization problem in (2), the total complexity was fixed
to Cmax = 50 MCPS. The genetic algorithm had a population of
M = 100 possible candidates and K = 10 generations, which we
observed to be a good trade-off between the accuracy of the solution
and the duration of the optimization process. Given the relatively
small size of the population, we chose a deterministic tournament
selection [41] by calculating the fitness function Q (-) for all the
elements of the population. A seed was given to generate the ini-
tial population by biasing this towards a known hand-tuned solu-
tion that achieved reasonable values in the algorithmic design phase,
pmar. This was done with the same operator used in the crossover
operation (3), where each randomly generate solution is weighted
with prar and 3 ~ 14£(0.3,0.7). The best M = 20 or less sets
of parameters in each generation that fulfill the constraint were mi-
grated to the next generation, of the remaining sets half went through
crossover and half through mutation. The optimization process took
about 90 hours on a 16-core Intel Xeon machine with parallelized
scripts. Note that while the tuning database is fixed, calculating
Q (8[n, p]) requires running all 3,150 signals for each population
element p at each iteration. The analysis-modification-synthesis as
well as the different algorithmic components operated on a 16 ms
frame size (256 samples at 16 kHz) with 50% overlap.

4.4. Results

The scatterplots of the fitness values Q ( ) for each element of the
initial population and final population of the evolutionary optimiza-
tion process are shown in Figure 3. The solution optimized for PAR,
Prar, and the solution optimized for MOS, pmos, on the training
database not only achieve much higher PAR and AMOS but also
achieve a net 20% reduction in computational complexity. The un-
constrained solutions are also calculated, ppar, and Pmos,, respec-
tively. The final sets of parameters are chosen according to (5) and
evaluated on the testing database. The results are shown in Table 2.
While similar mean fitness values for the the last population
1Y and its immediate preceding ones, i.e., | 8 Sy proved over-
all convergence, it was observed the existence of quasi-optimal solu-
tions within the final population that can have significantly different
element-wise values, p(mji ). This non-uniqueness problem, often en-
countered in nonlinear programming, [26] is, arguably, not a weak-
ness in our case. In fact, having a set of possible candidates with
different characteristics increases our chances of determining a set
of parameters that offers better properties for our purposes, while
still moving in the neighborhood of the optimal value. In this re-
gard, we have observed that the seed for the generation of the ini-
tial population given by pinir, did not affect the values of the final
fitness function or the overall behavior of the final population. In
fact, pinir biased the initial population but did not restrict the actual
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Fig. 3. Initial population (squares) and final population (circles) in
the constrained optimization over AMOS and PAR on the training
database. The initial solution piir is the red square, while the opti-
mal final solution that respects the constraint is the red circle.

Table 2. Results of the GA optimization algorithm.

| PAR[%] AMOS C(p) [MCPS]
PINIT 51.04 0.32 49.14
Drar 62.94 0.65 41.17
DPrar, 63.15 0.68 53.56
Pwmos 60.07 0.87 42.56
Pwmos, 60.22 0.92 55.23

search region determined by the bounds L and U. The major impact
of pointing the search towards a reasonable path results in speeding
up the genetic algorithm convergence by reducing both number of
iterations and size of the population.

In informal listening, the difference in the output processed with
Prar and Pmos, follow known differences in SE when targeting
recognition and intelligibility versus perceived quality of speech. A
clear example is the binary mask being enabled by the optimization
process only in the ppar, while the pmos solution exploited the
perceptual masking properties of speech in noisy conditions.

5. CONCLUSIONS

In this work, we presented an optimization framework for tuning pa-
rameters and selecting algorithms of a speech enhancement system
under the constraint of limited computational complexity imposed
by a given target platform. The results showed a net improvement
over an initial solution hand-tuned by an expert both in terms of
mean opinion score (MOS) and phone accuracy rate (PAR). On the
test set, the PAR increased by 11.90% and AMOS increased by 0.55,
while keeping the complexity below the imposed target of 50 MCPS.
In fact, the optimized system resulted in a 20% lower complexity so-
lution than the initial hand tuned system. The proposed system can
be very helpful in the prototyping phase as well as in the conceptual
stage of algorithm design.
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