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Motivation
• Speech enhancement (SE) systems integrate dif-
ferent algorithms and aim atmaximizing their over-
all performance using objective measures:
–Mean Opinion Score (MOS) for full-duplex com-
munication schemes.

–Phone Accuracy Ratio (PAR) for ASR front-ends.
•Commercially viable SE system must take into ac-
count the computational budget of the target
hardware.
•Procedure for tuning the parameters of an SE sys-
tem p = {p1, p2, . . . , pN} are not explicitly formalized
and highly suboptimal:
– Each component profiled separately.
–Use of measures easier to handle but not related
to the actual overall target (e.g., MSE).

– Tuning only done at an advanced stage of the
development relying on small test cases.

1 Speech Enhancement System

1.1 Architecture

Block diagram of the speech enhancement system.

•Robust Acoustic Echo Canceler (RAEC) employs
an error recovery nonlinearity allowing for contin-
uous update. Multi-delay adaptive filter structure
[1,2].
•Residual Echo Power Estimator (RPE) based on co-
herence [3,4].
•Double Talk Probability (DTP) based on coherence
[5].
•Noise Power Estimator (NPE) based on [6], implic-
itly accounting for the speech presence probabil-
ity (SPP).
•Direct Masking (MASK) applies a masking based
on [8] or quasi-binary based on [9] depending on
the SNR.

1.2 Complexity Analysis

•While the actual complexity is platform depen-
dent, each fundamental operations can be esti-
mated in terms of DSP cycles, thus subsequently
calculated in terms of million cycles per second
(MCPS).
•Dividing the analysis per sample for each block

CRAEC = (3Niter + 2)-FFTRAEC + (5Niter + 3)-mply + (3Niter + 1)-MAC
+ (2Niter + 1)-cplx-pwrSpectr + (2Niter + 1)MRAEC-cplx-mply
+ Niter(MRAEC + 1)-add + Niter-sqrt + 2Niter-div + Niter-if-else
+ NiterMRAEC-real-cplx-mply

CSTFT = 2-mply + FFTSTFT
CDTP = 3-cplx-pwrSpectr + 18-mply + 12-MAC + 1-cplx-mply + 6-div

+ 9-add + 1-exp + 1-sqrt + 1-log
CRPE = 1-cplx-pwrSpectr + 4-mply + 3-MAC + (MRPE + 1)-cplx-mply

+ (MRPE + 1)-add + 1-div
CNPE = 1-cplx-pwrSpectr + 3-div + 3-add + 5-mply + 1-exp + 3-MAC

+ 2-if-else
CNS = 2-cplx-pwrSpectr + 2-add + 1-if-else + 3-mply + 2-MAC + 3-div

• The overall complexity of the system is then
C(p) = (CRAEC1

+ CRAEC2
+ 7CSTFT + CDTP

+ CRPEH + CRPEL + CNPE + CNS)
fs
106

[MCPS].

•Note:
– The tuning parameters highlighted above are the
one affecting directly the computational cost.

–Defined binary parameters that enable/disable
algorithmic components.

–Other parameters, e.g., smoothing factors, time
constants, and thresholds, should also be opti-
mized jointly.

2 Optimization Framework

• The tuning problem can be formulated mathe-
matically as a constrained optimization problem.
• Let ŝ[n,p] be the SE system output obtained with p,
the problem can be written as:

maximize Q(ŝ[n,p]),

subject to C(p) ≤ Cmax.

where Q ( · ) is the optimization criterion and Cmax is
the computational complexity constraint.
•We choose to solve this nonlinear programming
problem applying a genetic algorithm (GA). Us-
ing operators such as mutation and crossover are
used to evolve a set of solutions, Π(k) = {p(k)

m ,m =
1, . . . ,M}. At convergence (K iterations), we ob-
tain:

p̂ = arg max
p
(K)
m ∈Π(K)

Q
(
ŝ[n,p(K)

m ]
)

s.t. C(p(K)
m ) ≤ Cmax.

3 Experimental Analysis

3.1 Dataset Generation

•Key element for the proposed approach is to have
a well structured database for training and testing
that correlates well with real world scenarios.
•We applied statistics of conversational speech to
generate a database of 3,150 conversational se-
quences from the TIMIT database for training and
3,150 for testing (length between 6 to 8 s).
• Signal-to-Echo Ratio (SER) was uniformly dis-
tributed between -30 and 5 dB and 10 RIRs were
used, measured in office environments.
• Signal-to-Noise Ratio (SNR) uniformly distributed
between -5 to 10 dB (different types of noise).
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Example of a conversational speech sequence and its
Markov chain generative model.

3.2 Setup and Results

•Optimization criteria:
–Median ∆MOS (ŝ[n,p], y[n]) obtained through
POLQA [10], calculated for each utterance and
averaged over training set.

–PAR calculated over training set using acoustic
model of 61 phones, 13 MFCCs +13 ∆MFCCs + 13
∆∆MFCCs, 5-state HMMs, 8-mixture GMMs (train-
ing on clean speech only to focus on SE [9]).

•Constraint: Cmax = 50 MCPS
•GA with population of 100 elements and 10 gen-
erations run (convergence reached); 90 hours on
a 16-core Intel Xeon machine with parallelized
scripts.

Results of the GA optimization algorithm (test TIMIT)
(constrained vs. unconstrained).

PAR [%] ∆MOS C (p) [MCPS]
pINIT 51.04 0.32 49.14
p̂PAR 62.94 0.65 41.17
p̂PARu 63.15 0.68 53.56
p̂MOS 60.07 0.87 42.56
p̂MOSu 60.22 0.92 55.23
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Initial population (squares) and final population (circles) of
the GA in the constrained optimization over ∆MOS and PAR
on the training database. The initial solution pINIT is the red
square, while the optimal final solution that respects the

constraint is the red circle.

4 Conclusions

•Results over presented SE system showed:
–Net improvement over an initial solution hand-
tuned by an expert both in terms of MOS (+0.55)
and PAR (+11.90%).

–Complexity kept below imposed target of 50
MCPS (20% less complex than initial solution).

•Proposed system can be very helpful in the proto-
typing phase as well as in the conceptual stage of
algorithmic design.
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