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2Real-time optimization in signal processing

I Hard real-time (a solution is required at a certain time).

I General optimization in signal processing: as fast as
possible.

I Current well-known methods: NLMS, RLS, LPC
analysis/synthesis, Kalman filtering, Viterbi (decoding)....

I Real-time optimization for more complicated problems:
I More complicated constraints
I General convex problems or possible non-convex problems.
I Non-smooth problems.



3Principles of linear prediction

I A stationary set of samples of speech x[t], for t = 1, . . . , T ,
are written as a linear combination of N past samples

x[t] =

N∑
n=1

αnx[t− n] + r[t], (1)

I {αn} are the prediction coefficients and r[t] is the
prediction error.

I Matrix formulation (certain boundary conditions)

x = Xα+ r (2)

I Find the prediction coefficients via

minimize
α

‖x−Xα‖pp (3)



4Conventional linear prediction

I Select p = 2
minimize

α
‖x−Xα‖22 (4)

I Solution satisfying the normal equation

XTXα = XTx (5)

I The autocorrelation matrix R = XTX, is Toeplitz and
with the special right-hand side, XTx the system can be
solved using the Levinson–Durbin algorithm in O(N2).



5Long-term prediction

I Generally, linear prediction models only short-term
redundancies of speech, thus is often used in combination
with a single-tap or multi-tap long-term predictor1. The
speech model for the long-term predictor is

d[t] =

K∑
k=0

φkd[t− Tp − k] + r[t], (6)

I {φk} are the (long term) prediction coefficients and r[t] is
the prediction error, and pitch period Tp [in samples].

1P. Kabal and R.P. Ramachandran. “Joint optimization of linear
predictors in speech”. In: Acoustics, Speech and Signal Processing, IEEE
Transactions on 37.5 (1989), pp. 642–650. issn: 0096-3518.



6Combining short-term and long-term prediction

I The combination of short term and long prediction filter
can be seen as a sparse high order filter:
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Figure : A 640 samples segment of the voiced speech (vowel /a/
uttered by a female speaker) and some predictors.



7High-order sparse linear prediction

I Imposing sparsity via the 1-norm convex relaxation:

minimize
α

‖x−Xα‖22 + γ‖α‖1 . (7)

I However, when imposing sparsity on both the residual
vector and high-order predictor, gains can been obtained
both in terms of modeling and coding performance2

minimize
α

‖x−Xα‖1 + γ‖α‖1 . (8)

I In general, check out3.
2D. Giacobello et al. “Speech coding based on sparse linear prediction”.

In: Proc. of the European Signal Processing Conference (EUSIPCO). 2009,
pp. 2524–2528.

3Daniele Giacobello et al. “Sparse linear prediction and its applications
to speech processing”. In: Audio, Speech, and Language Processing, IEEE
Transactions on 20.5 (2012), pp. 1644–1657.



8Solving the sparse linear prediction problem

I The objective:

f(α) = ‖x−Xα‖1 + γ‖α‖1 (9)

I is convex but not differentiable, neither is any of the terms
→ proximal gradient methods are not applicable456.

4Yu. Nesterov. Gradient methods for minimizing composite objective
function. Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE). No 2007076, CORE Discussion
Papers. 2007.

5A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. In: SIAM Journal of Imaging
Sciences 2 (1 2009), pp. 183–202.

6S. J. Wright, R.D. Nowak, and M. A. T. Figueiredo. “Sparse
reconstruction by separable approximation”. In: Signal Processing, IEEE
Transaction on 57 (2009), pp. 2479–2493.



9Solving the sparse linear prediction problem I

I The problem can be solved as a general linear
programming problem using interior-point methods78.

I Work-load concentrated on solving linear systems with
coefficient matrix

C = XTD1X+D2, D1, D2 diagonal, change at each iteration
(10)

I With X ∈ R260×100: solved in ' 10 ms on a standard
laptop computer using C++ and MKL BLAS.

7Ghasem Alipoor and Mohammad Hasan Savoji. “Wide-band speech
coding based on bandwidth extension and sparse linear prediction”. In:
Telecommunications and Signal Processing (TSP), 2012 35th International
Conference on. IEEE. 2012, pp. 454–459.

8T.L. Jensen et al. “Real-time implementations of sparse linear
prediction for speech processing”. In: Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE.
2013, pp. 8184–8188.



10Solving the sparse linear prediction problem II

I Can it be done faster/more efficient?

I Is it possible to exploit the structure of X and R = XTX?

I Is the high accuracy of the IP methods necessary?



11Solving the sparse linear prediction problem III

I Investigate Douglas-Rachford and Alternating Directional
Method of Multipliers (ADMM)

I Can be understood as dual methods of each other.

I Long history but have recently gained interested, also in
signal processing910.

9M.V. Afonso, J.M. Bioucas-Dias, and M.A.T. Figueiredo. “Fast Image
Recovery Using Variable Splitting and Constrained Optimization”. In:
Image Processing, IEEE Transactions on 19.9 (2010), pp. 2345–2356. issn:
1057-7149.

10J. Yang and Y. Zhang. “Alternating Direction Algorithms for
`1-Problems in Compressive Sensing”. In: SIAM Journal of Scientific
Computing 33.1 (2011), pp. 250–278.



12Douglas-Rachford I

I Write the problem as

minimize
α

f1(α) + f2(Xα) (11)

I f1(u) = γ‖u‖1 and f2(u) = ‖x− u‖1.

I Let h(u1, u2) = f1(u1) + f2(u2), then the problem can be
written as

minimize
u1,u2

h(u1, u2)

subject to u2 = Xu1 .
(12)



13Douglas-Rachford I

I One form of the Douglas-Rachford algorithm is then

u(k+1) = proxth(z(k)) (13)

y(k+1) = PQ(2u(k+1) − z(k)) (14)

z(k+1) = z(k) + η(y(k+1) − u(k+1)) (15)

I Relaxation parameter ρ ∈ (0, 2), step-size parameter t > 0,
set Q = { [u1, u2]T |u2 = Xu1 }

I For smooth and strongly convex problems there are optimal
choices for t, ρ. For non-smooth it is more heuristics11.

I In this form, also known as Spingarns method12.
11P. Patrinos, L. Stella, and A. Bemporad. Douglas-Rachford splitting:

complexity estimates and accelerated variants. Proc. 53rd IEEE
Conference on Decision and Control (CDC). 2014.

12J.E. Spingarn. “Applications of the method of partial inverses to
convex programming: Decomposition”. In: Mathematical Programming
32.2 (1985), pp. 199–223.



14Douglas-Rachford II

I Step one and three is simply soft-thresholding and level 1
BLAS.

I The projection in step 2 is

PQ(v) =

[
I
X

]
(I +XTX)−1(v1 +XT v2) . (16)

I To compute (16) we need to solve a linear system of
equations with (constant) coefficient matrix I +XTX and
varying right-hand sides (v1 +XT v2).

I Recall R = XTX (symmetric and Toeplitz).



15ADMM I

I Reformulate as a basis pursuit problem

minimize
z̃

‖z̃‖1
subject to X̃z̃ = x̃

(17)

I with

X̃ =
[
X γI

]
(18)

x̃ = γx . (19)



16ADMM II

I This problem formulation readily brings us to an ADMM
algorithm defined by the iterations:

z̃(k+1) = PU(ỹ(k) − ũ(k)) (20)

ỹ(k+1) = S1/ρ(z̃
(k+1) + ũ(k)) (21)

ũ(k+1) = ũ(k) + z̃(k+1) − ỹ(k+1) . (22)

I where U = {z̃ ∈ Rm+n | X̃z̃ = x̃}



17ADMM II

I We find it instructive to write the algorithm in the form:

α(k+1) = αγ,2 −
[
−γI
X

]+

(y(k) − u(k)) (23)

e(k+1) = x−Xα(k+1) (24)

y(k+1) = S1/ρ

([
γα(k+1)

e(k+1)

]
+ u(k)

)
(25)

u(k+1) = u(k) +

[
γα(k+1)

e(k+1)

]
− y(k+1) . (26)

I where α2,γ = (XTX + γI)−1XTx and (·)+ denotes the
Moore-Penrose pseudo-inverse.

I Note that with ỹ(0) − ũ(0) = 0, we have α(1) = αγ,2, and the
ADMM algorithm can then be interpreted as iterative
“sparsification” of the `2-regularized “classical” linear
prediction solution.
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Solving positive-definite symmetric Toeplitz sys-
tems I

I Fast algorithms13 → O(N2).
I Superfast algorithms14 → O(N log2N) subsequent solves:
O(N logN).

I “Intermediate”15 → O(N2) subsequent solves: O(N logN).
I Break-even point in the number of operations at

approximately N = 256 for N as a radix 2 number. We will
use N = 250, so go for the intermediate.

13N. Levinson. “The Weiner RMS Error Criterion in Filter Design and
Prediction”. In: Journal of Mathematics and Physics 25 (1947),
pp. 261–278.

14R.R. Bitmead and B.D.O Anderson. “Asymptotically fast solution of
Toeplitz and related systems of linear equations”. In: Linear Algebra and
its Applications 34 (1980), pp. 103–116; G.S. Ammar and W.B Gragg.
“Superfast solution of real positive definite Toeplitz systems”. In: SIAM
Journal on Matrix Analysis and Applications 9.1 (1988), pp. 61–76.

15J. R. Jain. “An efficient algorithm for a large Toeplitz set of linear
equations”. In: Acoustics, Speech and Signal Processing, IEEE
Transaction on 27.6 (1979).
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Solving positive-definite symmetric Toeplitz sys-
tems I

The inverse of a Toeplitz matrix can be described by the
Gohberg-Semencul formula

δNT
−1 = T1T

T
1 − T T0 T0 (27)

where

T0 =


0 0 · · · 0
ρ0 0 · · · 0
...

. . .
. . .

...
ρN−1 · · · ρ0 0

 , T1 =


1 0 · · · 0

ρN−1 1 · · · 0
...

. . .
. . .

...
ρ0 · · · ρN−1 1

 .
(28)

The variables δN and ρ0, . . . , ρN−1 is a by-product of the
Durbin algorithm (or Szegő recursions).
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Solving positive-definite symmetric Toeplitz sys-
tems II

I The solution to the system Tx = b is then given by

x = T−1b =
1

δN

(
T1T

T
1 b− T T0 T0b

)
. (29)

I Evaluation of matrix-vector products with T0, T1 is possible
via FFTs/IFFTs.



21Timings

Results in ms on a standard desktop, single sentence, 131
frames of 20ms.

Methods Timings

CVX+SeDuMi 1327.29/2467.80/3619.74

Mosek 145.54/224.71/307.60

Cprimal 55.24/92.70/180.46

Cprimal(s/d) 33.59/63.66/112.09

DR-L 0.65/6.62/10.11

DR-GS 0.61/2.28/3.26

ADMM-L 0.65/2.99/5.14

ADMM-GS 0.61/1.29/1.92

Table : Timing in milliseconds. Format: min/average/max. The
settings are T = 320, N = 250 (M = 570).



22Convergence behaviour example
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Figure : The endpoints of the graphs illustrates where the stopping
criteria has become active and stopped the iterative algorithm.



23Convergence behaviour

I The splitting methods solved the problem to a low
accuracy. Define the metrics

mDR =
fDR − f?

f?
, mADMM =

fADMM − f?

f?
(30)

I On average mDR and mADMM is 0.14 and 0.12,
respectively.

I ADMM uses 13.5 iterations on average, while the DR
based algorithms uses 35.3 iterations on average.

I Sub-optimal solutions can still provide exactly sparse
solutions due to the soft-thresholding function.

I Do we only need a sparse and “small” solution with
“small” residual?



24Prediction gain

METHOD
N

320 640

LTP1 17.3±0.8 14.2±1.0

LTP3 22.3±0.8 19.9±0.9

LTP3j 24.2±0.6 22.6±0.8

HOLP 32.4±0.6 31.3±0.7

HOSpLPip 28.6±1.1 27.8±1.4

HOSpLPdr 28.5±1.4 27.6±1.6

HOSpLPadmm 28.3±1.7 27.2±1.6

Table : Average prediction gains [dB] for segments of different length
N , TIMIT database, only voiced speech frames. A 95% confidence
interval is shown. The number of nonzero elements, card(·), is shown
for comparison. Fixed γ = 0.12.



25AR Interpolation I

I A segment of known and unknown samples

x = Kxk + Uxu, (31)

I where U and K are T × T “rearrangements”

I If the AR coefficients are known, the residual is

r = A(Kxk + Uxu) (32)

I with A the so-called analysis matrix obtained from α.

I The least-squares solution is

xu = −
(
ATuAu

)−1
ATuAkxk (33)

with Au = AU and Ak = AK.



26AR Interpolation II

METHOD
TGAP

4 6 8 10 20

sLP 3.92±0.09 3.15±0.15 2.96±0.16 2.30±0.18 1.71±0.22

LTP1 4.13±0.07 3.44±0.14 3.17±0.12 2.71±0.09 2.45±0.13
LTP3 4.17±0.07 3.53±0.09 3.22±0.13 2.92±0.12 2.63±0.09
LTPj 4.12±0.05 3.63±0.12 3.31±0.12 3.00±0.11 2.75±0.16

HOLP 4.27±0.04 3.55±0.06 3.34±0.08 2.91±0.09 2.61±0.11

HOSpLPip 4.34±0.03 3.75±0.05 3.56±0.08 3.27±0.09 3.12±0.15
HOSpLPdr 4.34±0.02 3.74±0.08 3.55±0.07 3.27±0.11 3.12±0.12

HOSpLPadmm 4.31±0.04 3.69±0.07 3.54±0.07 3.24±0.08 3.11±0.11

I Use α and xk from previously known frame of size 40 ms.

I 1000 sentences from the TIMIT database (both voiced and unvoiced).

I TGAP is the length of the unknown vector measured in ms.

I Average MOS for speech reconstruction with different gap size losses. A 95%
confidence interval is shown.



27Conclusion

I Propose fast algorithms for sparse linear prediction.

I Usage of O(N logN) algorithms for repeated solve of
positive definite symmetric Toeplitz systems.

I The low accuracy solution provided by the fast algorithms
allows to be implemented in real-time systems, particularly
in wideband speech processing.

I Experimental evidence obtained through perceptually
objective measures shows that the low accuracy solution
performs as good as the high accuracy solution when
applied in a autoregressive model-based speech
reconstruction framework.


