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ABSTRACT

Using a sparsity promoting convex penalty function on high-order
linear prediction coefficients and residuals has shown to result in
improved modeling of speech and other signals as this addresses the
inherent limitations of standard linear prediction methods. However,
this new formulation is computationally more demanding which may
limit its use, in particular for embedded signal processing. This pa-
per analyzes the algorithmic and computational aspects of the matrix
structures associated with an alternating direction method of multi-
pliers algorithm for solving the convex high-order sparse linear pre-
diction problem. The paper also analyzes the inherent trade-off be-
tween accuracy and the objective measure of prediction gain and
shows that a few iterations are sufficient to achieve similar results as
computationally more expensive interior-point methods.

Index Terms— Sparse linear prediction, speech and audio pro-
cessing, convex optimization, linear programming, embedded opti-
mization.

1. INTRODUCTION

Sparse linear prediction (SLP) [1, 2] revisits the linear prediction
(LP) framework [3, 4], one of the most successful tools for the
analysis and coding of speech signals, in light of the developments
that took place in the recent years in the field of convex optimiza-
tion and sparse representations. While software packages like, e.g.,
CVX+SeDuMi [5, 6] and ¢:-MAGIC [7] allow reproducing the core
of the research done by the authors, e.g., [8,9], in a few lines of code,
serious efforts to make these algorithms run faster and, possibly, in
a real-time platform is not an easy task and a currently a matter of
research in signal processing [10, 11].

SLP has proved to be an interesting alternative to classic LP by
allowing better statistical models and more meaningful signal repre-
sentation finding its way in various applications ranging from time-
frequency representation [12] and filter design [13] to more appli-
cation specific tasks, like, e.g., speech dereverberation [14], video
processing [15], geology [16], and radar imaging [17]. The compact
representation that linear prediction provides reveals a model for the
process, called the autoregressive (AR) model. This model is very
useful conceptually by representing a sample x[t] of the signal ana-
lyzed as a linear combination of previous samples and a prediction
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error [18]:
N
z[t] = Z anzxlt — n] + r[t], )
n=1
where a = [, ]}, are the prediction coefficients and r[t] is the

prediction error, also called prediction residual. The compact rep-
resentation provided by the LP model has a clear impact on its em-
ployment in compression where the theorem of predictive quantiza-
tion [19] states that the mean squared reproduction error in predictive
encoding is equal to the mean squared quantization error when the
residual signal is presented to the quantizer. This makes the quan-
tization approach optimal when the coefficients of the predictor are
obtained by minimizing the mean square error or 2-norm of the pre-
diction error. The general formulation is:

minimize ||z — Xa|p )
where || - || is the p-norm defined as ||z||, = (Z%Zl |xm|p)% for
p > 1and
x[Tﬂ JZ[Tl — N]
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Assuming z[t] = 0 for ¢ < 1 and ¢ > T for some T, the indexes T
and 75 can be chosen in various ways which lead to different types
of solutions with different properties [20]. In the above mentioned
case, where p = 2, a closed-form solution can also be obtained
a=(XTX)"'XTg.

This model, however, fails to provide a general framework when
the signal redundancies are present at different time intervals, like
in the case of speech and audio, where a given segment has short-
term and long-term redundancies that cannot be represented by a
simple linear prediction model with a limited number of taps. Tra-
ditional approaches tend to represent short-term redundancies using
traditional LP and represent long-term redundancies by applying a
so-called long-term predictor (LTP) with a very limited number of
taps clustered around the pitch period of the speech or audio sig-
nal [21]. Since the combination of these two filters is a high-order
sparse predictor, a more effective way to model these types of sig-
nal was shown by increasing the order of the predictor and apply a
sparsity criterion on its coefficients [22]:

minimize ||z — X a5 + ~||a|1, “)
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where the 1-norm is the well known convex relaxation of the so-
called O-norm [23]. By applying this method it is shown to be possi-
ble to identify the true structure of the predictor, even for polyphonic
audio signals [9]. In addition, by applying the 1-norm also on the
residual, both modeling and coding advantages can be achieved [2].
Our SLP formulation then becomes:

miniamize fla) =z — Xa|l1 + 7v]le|h (5)

with a solution a*. This problem does not have a closed-form solu-
tion, for which reason iterative methods have been developed.

Solving (5) using iterative methods is further complicated since
neither one of the terms in the objective function f(«) are differen-
tiable and hence fast proximal gradient methods cannot be employed
[24,25]. To solve more general convex optimization, a significant
amount of work for real-time optimization has lately been focused on
code generation using interior-point (IP) methods [10,26,27]. The
most significant matrix structure these methods exploit is sparsity,
i.e., for example at code-generation exploiting [A 0][zT y7]7 = Az
such that we avoid computing 0-y. On the other hand many applica-
tions in signal processing, including the problem (5), involve around
(dense) Toeplitz structured matrices, or in general, low displacement
rank matrix structures.

For IP methods the main bulk of work is to solve a linear system
of equations in each iteration where additional scaling matrices are
introduced and in particular diagonal matrices for linear program-
ming. Such diagonal matrices often destroys the possibility of faster
direct methods for solving a linear system (see, e.g., the discussion
in [28]). Specifically, IP methods for the SLP problem (5) would
have cubic per iteration time complexity [29,30] and quadratic space
complexity. In particular, the introduction of the diagonal scaling
matrix for the SLP problem prohibits the exploration of Toeplitz
structure since such matrices do not have a low displacement rank.

Fast (and superfast methods) for, e.g., solving linear Toeplitz
systems are known with quadratic or linearithmic time complexity
and linear space complexity, e.g., [31,32]. The last couple of years a
new class of algorithms based on the alternating methods of multipli-
ers (ADMM) have reemerged (see, e.g., the overview work [33,34]),
with widespread use in signal processing [35-37]. ADMM algo-
rithms require more iterations than IP methods but allow the use of
fast(er) methods for Toeplitz systems.

This paper deals with understanding the trade-offs occurring in
choosing a proper and fixed number of iterations for the ADMM al-
gorithm and extends the analysis and algorithms presented in [30,
38]. We note that we will apply an ADMM algorithm in its straight-
forward form but several variants and extensions may be useful for
solving the sparse linear prediction problem efficiently and may be
considered for further investigations. On particular choice is a pre-
conditioned ADMM (Chambolle-Pock) where the algorithm does
not involve solving a linear system of equation [51].

2. AN ADMM ALGORITHM FOR THE SLP PROBLEM

There are numerous approaches for formulating an ADMM algo-
rithm for the problem (5), but, in this paper, we follow the overview
work in [33,34]. The problem (5) can be reformulated as the least
absolute deviation problem

minimize ||Az — b||1, (6)

A:Pﬂ,b:[_ox],z:a. 7

with

The ADMM algorithm in the scaled form for solving the least abso-
lute deviation problem is

A = (ATA) AT (™ b —u®) @®)
y*t =5, (Az<k+1> b u““)) ©)
wFtD — (B L gD _ y(kJrl) —b (10)

where p is a scaling parameter and S is the soft-thresholding function
given by

(S¢(v))s = sgn(v;) max(|vi| —¢,0), (11)
and (-); denotes the ith element. The explicit ADMM form for the
SLP problem can now be formulated. We have

ATATAT =(XTX+ D7 [T —XT], (1)

and (k) (k)
(k) . Yo |y
where e®) =  — Xa'® is defined as the error signal at the kth

iteration and the algorithm is then
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This algorithm has an interesting interpretation. In the first line we
have the term

XX ++*D7 [vI —X] {_04 =(X"X++"D ' X"
L. (18)
Here o4 ,2 is the “standard” regularized 2-norm linear prediction so-
lution. With this definition we may reformulate the steps in the

ADMM algorithm (14)—(17) to the more instructional form

Q) — Qy2 + (XTX + ’721)71 [’YI _XT] (y(k) - u<k))

(19)
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such that with y® = 4(® = 0, this ADMM algorithm for the
SLP problem may be interpreted as an iterative sparsification of the
regularized 2-norm linear prediction solution c,2.

At this point it is worth mentioning that following (18), we are
solving the least-squares problem

e (0[5 =)

(23)

minimize
«@
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in each iteration. This should be compared with IP methods for the
least absolute deviation problems, where we need to solve a number
of reweighted least-squares problems, see e.g. [39, §11.8.2]. How-
ever, the reweighting destroys the Toeplitz structure and we need to
resort to more general linear solvers like Cholesky factorization with
time-complexity O(N?), as in [30].

2.1. Solving a symmetric positive Toeplitz linear system

From the ADMM algorithm outlined in (14)—(17) it is clear that spe-
cial attention should be paid to solving the linear system

(XTX+72 0™ = [y —xT] (y® + {_Ox} —u®), (24)
in order to obtain an efficient algorithm. Firstly, the behavior of
y(k) — 4™ from iteration to iteration is currently unclear, so we
consider this as a general right-hand side problem

(XTX 442N = ™) (25)

If X is formed using the autocorrelation method with 77 = 1 and
T> =T + N then

XX +9°T = {tji—j }=1 (26)

is a symmetric, positive definite Toeplitz matrix with to = 7o + ~>
andt; =r5,i=1,...,N—1where R=XTX = {r‘i,ﬂ}f\fj:l
is the Toeplitz autocorrelation matrix.

A standard algorithm for solving symmetric positive definite
linear systems is the Levinson algorithm [40] with time-complexity
O(N?) [41]. Another approach is to use the Gohberg-Semencul rep-
resentation of the inverse of a Toeplitz matrix and use the algorithm
presented in [42]. We denote this as the GS approach. The advantage
of the GS approach is that we initially run the Szego recursion with
time-complexity O(N?) and then the system (25) can be solved
with time-complexity O(N log N) via a number of FFTs/IFFTs
for each iteration' k& = 1,..., K [42]. The time-complexity of
the initialization may be further reduced using superfast solvers in
time O(N log® N) but the constant is larger such that this approach
would require more operations unless N > 256, see [31,32]. Typ-
ical applications of SLP have dimensions N < 256, and the initial
Szegd recursion in the GS approach is a much simpler algorithm
than the initial step in superfast algorithms and do not exploit this
possibility further in this paper.

2.2. Accuracy requirement

While in the previous section we have discussed the need for solving
the problem (5), most iterative methods will only solve (5) approxi-
mately so an important question is how accurate should the solution
be for the task given. First of all, the LP speech model only approx-
imates the human speech production system and the model is not
noise free [43]. Moreover, the convex optimization framework uses
the 1-norm because of its feasibility but more effective solutions for
our needs might be possible by, e.g., reducing the mismatch between
l-norm and the 0-norm. In other words, we are not interested in a
solution of (5) but we are seeking a good enough & ~ a* that cap-
tures the essence of our endeavor. For example, using (5) for speech
coding purposes might require different accuracy than using it for

IPrecisely 3 FFTs and 3 TFFTs per iteration and 2 FFTs in connection to
the initial Szego recursion.

modeling the speech glottal flow [44]. So, since we have used sev-
eral approximations to formulate (5) it is likely that the performance
as a function of the accuracy f(a'®) — f(a*) < € shows a satura-
tion effect as a function of k (like in [11]). Specifically, for a certain
e or k = K we may see no or little improvement in our performance
metrics.

3. NUMERICAL SIMULATIONS

We will now proceed to investigate the prediction gain performance
as a function of the number of iterations of the presented ADMM al-
gorithm and the associated computational cost assessed via timings.

3.1. Prediction Gain

Similarly to what was done in [38], we processed only the vowel
and semivowel phones [45] from the TIMIT database (sampled at
16 kHz), belonging to 3696 sentences from 462 speakers. We chose
the ones of duration of at least 640 samples (40 ms) for a total of
about 40,000 voiced speech frames. We extend the analysis in [38]
by investigating the prediction gain from the ADMM solution with
a different number of iterations and compare with the IP solution
obtained through the CVX+SeDuMi interface and solver. In both
formulation of the SLP problem (5), we chose v = 0.12 obtained
through a modified version of the L-curve [46] by using all except
50 frames picked randomly that will be used as a test set. This value
provided a good trade-off between the sparsity of the residual and
sparsity of the predictor. We chose N = 250 by which we were able
to cover the pitch lag range T, € [34,231] as done in commercial
speech codecs like the wideband version of the Adaptive Multi-Rate
codec (AMR-WB [47]). We tested the ADMM algorithm for a dif-
ferent number of iterations k € {5, 10,15, 20, 25, 30}, the results
for the 50 frames part of the test set are shown in Figure 1.
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Fig. 1. Average prediction gains for a fixed number of iterations for
the ADMM solution. A 95% confidence interval is shown. The IP
solutions as returned by CVX+SeDuMi is independent of the fixed
number of iterations K but shown for the ease of comparison. Notice
the saturation effect.

We can see that already above 20 iterations, we achieved pre-
diction gains with the ADMM in the same order as the one obtained
with the IP. At 30 iterations, the mean value of the IP solution fell
within the 95% confidence interval of the ADMM solution, proving
that the two algorithms exhibit statistically the same performance.
Notice the saturation effect. In Figure 2, we show an example of
the behavior of the different methods for the vowel /a/ extracted
from our experimental dataset. The result of the solution of 2-norm
unconstrained LP was shown for comparison. While theoretically
achieving the highest prediction gain, it can be seen that the solution



was quite similar to the ones obtained with SLP with a significant
lower number of non-zero coefficients. In particular, the cardinality
of the solutions obtained through ADMM and IP were truncated to
the 21 largest values to compare to traditional two step LP and LTP
while the 2-norm unconstrained LP retains all 250 nonzero coeffi-
cients [38].
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Fig. 2. Magnitude of the frequency response of the different meth-
ods proposed. A 320 samples segment of the voiced speech (vowel
/a/ uttered by a female speaker) is used for the analysis. The ADMM
solution is obtained with 30 iterations, CVX+SeDuMi is used to ob-
tain the IP solution, and HO2 is the classical LP solution with no
constraint. The FFT of the segment is shown for comparison.

3.2. Timing

We empirically assessed the computational complexity of the pro-
posed ADMM algorithm by timing a C++ implementation using the
FFTW3 library [48] and Intel Math Kernel Library (MKL) [49] for
BLAS level 1 routines and element-wise operations (a < b ® ¢)°.
The simulations were executed on an Intel(R) Core(TM) 17-5600U
CPU 2.6 GHz with Ubuntu Linux kernel 3.19.0-43-generic, MKL
11.3 Beta. The algorithms implemented in C++ were compiled us-
ing gcc-4.8 and the -Os -march=native optimization option.
The timings were obtained by executing the algorithms 10° times
using the smallest ¢ € {0,1,2,---} such that the total execution
time was 79 > 0.2s. For this ¢, three repetitions of 10" executions
were then run and timed, producing the three repetition times 71, T2
and 73. The execution time of the algorithm is then estimated as
t = min(7y1, 72, 73)/10° (same as Pythons timeit module [50]). The
time ¢, was calculated for k& € {5, 10, 15, 20, 25, 30} and the results
almost followed a straight line so we use linear regression and report
the coefficients of determination C2.

Using the Levinson algorithm for solving the linear system we
obtain

th ~7-107° 415910 % [s], C*=0.999. @7
Using the GS algorithm we obtain

th 2 62-107°+55-10"%% [s], C*=0.999. (28)

2C++ and Matlab implementations available at http://kom.aau.
dk/~t13/

From this is clear that the Levinson approach has a smaller initializa-
tion cost but higher per iteration cost compared to the GS approach.
For these implementations, the GS approach was a faster choice than
Levinson for k£ > 1. For comparison, a hand-tailored IP method [30]
gave

tr A~ 1206-107° 4203310 %% [s], C*=0.999. (29)
As argued previously, one IP method iteration is much more expen-
sive. But more importantly, it is possible to run £ ~ 36 iterations
of the ADMM algorithm using the GS approach for just a single
IP method iteration (including the Szego recursion in the initializa-
tion of the GS approach). As mentioned previously in this section,
k = K = 30 iterations is enough to obtain (in statistical terms) the
same performance.

4. CONCLUSIONS

A fast algorithm for the sparse linear prediction problem was pre-
sented. The method is based on an alternating direction method of
multipliers that has the important characteristic that the matrix struc-
tures which also occur in classical least-squares linear prediction is
preserved. Experimental analysis clearly shows the reduced cost per
iteration of the methods used versus common interior-point methods
while achieving the same prediction gain.
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