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I Linear prediction

I Solving a high-order sparse linear prediction problem

I Solving positive-definite Toeplitz systems

I Simulations and timings



3Principles of linear prediction

I A stationary set of samples (possible speech) x[t], for
t = 1, . . . , T , are written as a linear combination of N past
samples

x[t] =

N∑
n=1

αnx[t− n] + r[t], (1)

I {αn} are the prediction coefficients and r[t] is the
prediction error.

I Matrix formulation (certain boundary conditions)

x = Xα+ r (2)

I Find the prediction coefficients via

minimize
α

‖x−Xα‖pp (3)



4Conventional linear prediction

I Select p = 2
minimize

α
‖x−Xα‖22 (4)

I Solution satisfying the normal equation

XTXα = XTx (5)

I Using the autocorrelation method, R = XTX, is Toeplitz
and with the special right-hand side, XTx the system can
be solved using the Levinson–Durbin algorithm in O(N2).
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Exploiting redundancies:
Joint short-term and long-term prediction

I The combination of short term and long prediction filters
can be seen as a sparse high order filter:
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Figure : A 640 samples segment of the voiced speech (vowel /a/
uttered by a female speaker) and some predictors.



6High-order sparse linear prediction

I Imposing sparsity via the 1-norm convex relaxation:

minimize
α

‖x−Xα‖22 + γ‖α‖1 . (6)

I However, when imposing sparsity on both the residual
vector and high-order predictor, gains can been obtained
both in terms of modeling and coding performance1

minimize
α

‖x−Xα‖1 + γ‖α‖1 . (7)

I In general, see2.
1Daniele Giacobello et al. “Joint estimation of short-term and long-term

predictors in speech coders”. In: Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on. IEEE. 2009,
pp. 4109–4112.

2D. Giacobello et al. “Sparse linear prediction and its applications to
speech processing”. In: Audio, Speech, and Language Processing, IEEE
Transactions on 20.5 (2012), pp. 1644–1657.



7Solving the SLP problem I

I The objective:

f(α) = ‖x−Xα‖1 + γ‖α‖1 (8)

I is convex but not differentiable, neither is any of the terms
→ proximal gradient methods are not applicable345.

3Yu. Nesterov. Gradient methods for minimizing composite objective
function. Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE). No 2007076, CORE Discussion
Papers. 2007.

4A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. In: SIAM Journal of Imaging
Sciences 2 (1 2009), pp. 183–202.

5S. J. Wright, R.D. Nowak, and M. A. T. Figueiredo. “Sparse
reconstruction by separable approximation”. In: Signal Processing, IEEE
Transaction on 57 (2009), pp. 2479–2493.



8Solving the SLP problem II

I The problem can be solved as a general linear
programming problem using interior point (IP) methods67.

I Work-load concentrated on solving linear systems with
coefficient matrix

C = XTD1X+D2, D1, D2 diagonal, change at each iteration
(9)

I XTD1X is not Toeplitz and do not have low displacement
rank → resort to O(N3) methods for solving linear systems.

6G. Alipoor and M. H. Savoji. “Wide-band speech coding based on
bandwidth extension and sparse linear prediction”. In:
Telecommunications and Signal Processing (TSP), 2012 35th International
Conference on. IEEE. 2012, pp. 454–459.

7T.L. Jensen et al. “Real-time implementations of sparse linear
prediction for speech processing”. In: Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE.
2013, pp. 8184–8188.



9Solving the SLP problem III

I Is it possible to exploit the structure of X and R = XTX?

I Is the high accuracy of the IP methods necessary?



10An ADMM algorithm

One approach, is via the following straight-out-of-the-box
alternating direction method of multipliers (ADMM) algorithm

α(k+1) = (XTX + γ2I)−1
[
γI −XT

]
(y(k) +

[
0
−x

]
− u(k))

(10)

e(k+1) = x−Xα(k+1) (11)

y(k+1) = S1/ρ

([
γα(k+1)

e(k+1)

]
+ u(k)

)
(12)

u(k+1) = u(k) +

[
γα(k+1)

e(k+1)

]
− y(k+1) . (13)

I S1/ρ is the soft-threshold function.

I Operations with X is FIR filtering.
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Solving positive-definite symmetric Toeplitz
systems II

I Fast algorithms8 → O(N2).

I Superfast algorithms9 → O(N log2N) + O(N logN).

I “Intermediate”10 → O(N2) + O(N logN).

I Break-even point in the number of operations at
approximately N = 256 for N as a radix 2 number. We will
use N = 250, so go for the intermediate.

8N. Levinson. “The Weiner RMS Error Criterion in Filter Design and
Prediction”. In: Journal of Mathematics and Physics 25 (1947),
pp. 261–278.

9R.R. Bitmead and B.D.O Anderson. “Asymptotically fast solution of
Toeplitz and related systems of linear equations”. In: Linear Algebra and
its Applications 34 (1980), pp. 103–116; G.S. Ammar and W.B Gragg.
“Superfast solution of real positive definite Toeplitz systems”. In: SIAM
Journal on Matrix Analysis and Applications 9.1 (1988), pp. 61–76.

10J. R. Jain. “An efficient algorithm for a large Toeplitz set of linear
equations”. In: Acoustics, Speech and Signal Processing, IEEE
Transaction on 27.6 (1979).



12

Solving positive-definite symmetric Toeplitz
systems III

The inverse of a Toeplitz matrix can be described by the
Gohberg-Semencul formula

δNT
−1 = T1T

T
1 − T T0 T0 (14)

where

T0 =


0 0 · · · 0
ρ0 0 · · · 0
...

. . .
. . .

...
ρN−1 · · · ρ0 0

 , T1 =


1 0 · · · 0

ρN−1 1 · · · 0
...

. . .
. . .

...
ρ0 · · · ρN−1 1

 .
(15)

I The variables δN and ρ0, . . . , ρN−1 can be computed using
the Szegő recursions.

I Evaluation of matrix-vector products with T0, T
T
0 , T1, T

T
1 :

FFTs/IFFTs.



13Accuracy requirement

I The LP speech model only approximates the human speech
production system and the model is not noise free11,

I Moreover, the convex optimization framework uses the
1-norm because of its feasibility not because it was the best
choice.

I Summary: solution should only be accurate enough to
capture the essence of our endeavor.

I Expectation: saturation like effect as a function of
accuracy12.

11J.R. Deller, J.G. Proakis, and J.H.L. Hansen. Discrete-time processing
of speech signals. Ieee New York, NY, USA:, 2000.

12B. Defraene et al. “Real-Time Perception-Based Clipping of Audio
Signals Using Convex Optimization”. In: Audio, Speech, and Language
Processing, IEEE Transaction on 20.10 (2012), pp. 2657–2671.



14Prediction gain

I Processed only the vowel and semivowel phones from the
TIMIT database, 3696 sentences from 462 speakers
(≈40,000 voiced speech frames).

I Regularization γ obtained via modified L-curve analysis.
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I Average prediction gains for a fixed number of iterations for
the ADMM solution. A 95% confidence interval is shown.



15Timings

I C++/ FFTW3 library / Intel Math Kernel Library (MKL)

I Varying k and linear regression.

I ADMM: Levinson:

tk ≈ 7 · 10−6 + 159 · 10−6k [s], C2 = 0.999 .

I ADMM: Szegö recursion + Gohberg-Semencul

tk ≈ 62 · 10−6 + 55 · 10−6k [s], C2 = 0.999 .

I Handtailored IP method:

tk ≈ 1206 · 10−6 + 2033 · 10−6k [s], C2 = 0.999 .



16Summary

I High-order sparse linear prediction offers interesting
properties for speech processing.

I Need to solve a linear program for each frame → real-time
and embedded applications.

I An approach: efficient use of Toeplitz matrix structure
using the alternating direction method of multipliers.

I Low accuracy is sufficient to obtain similar prediction gain
as high accuracy methods.


