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Abstract— Using a sparsity promoting convex penalty func-
tion on high-order linear prediction coefficients and residuals ad-
dresses some inherent limitations of standard linear prediction
methods. This formulation, however, is computationally more
demanding which may limit its use, in particular for embedded
signal processing. We show that the matrix structures associated
with an alternating direction method of multipliers algorithm for
solving the high-order sparse linear prediction problem are more
tractable than the matrix structures for interior-point methods
and that a few tens of iterations suffice to achieve similar results,
in terms of prediction gain, as an interior-point method.

1 Background
Sparse linear prediction (SLP) [1, 2] revisits the linear predic-
tion (LP) framework [3, 4] in light of the developments that
took place in the recent years in the field of convex optimiza-
tion and sparse representations. SLP has proved to be an in-
teresting alternative to classic LP by allowing better statistical
models and more meaningful signal representation finding its
way in various applications, e.g., [5–7]. While software pack-
ages like CVX+SeDuMi [8, 9] allow to quickly reproduce the
SLP algorithm [10, 11], serious efforts to make SLP and other
algorithms requiring convex optimization run faster and, pos-
sibly, in a real-time platform, is a current matter of research in
signal processing [12, 13].

LP provides a compact representation for the signal x[t] as:

x[t] =

N∑
n=1

αnx[t− n] + r[t], (1)

where α = [αn]
N
n=1 are the prediction coefficients and r[t] is

the prediction error. A common route for estimation of α is via:

minimize
α

‖x−Xα‖pp (2)

where ‖ · ‖p is the p-norm and we here are working with a
vectorized version of (1) over a certain frame. With p = 2, a
closed-form solution can be obtained as α = (XTX)−1XTx.

The LP model finds one of its most successful applications
in speech and audio processing [4]. However, particularly in
speech processing, traditional LP fails to provide a general
framework when signal redundancies are present at different
time intervals. This is the case where a given segment x has
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short-term and long-term redundancies and cannot be repre-
sented by a simple linear prediction model with a limited num-
ber of taps. Traditional approaches tend to represent short-term
redundancies using traditional LP and represent long-term re-
dundancies by applying a so-called long-term predictor (LTP)
with a very limited number of taps clustered around the pitch
period of the speech or audio signal. Since the combination of
these two filters is a high-order sparse predictor, a more effec-
tive way to model these types of signal was shown by increas-
ing the order of the predictor and apply a sparsity criterion on
its coefficients [14]. In addition, by applying the 1-norm also
on the residual, both modeling and coding advantages can be
achieved [2]. A SLP formulation then becomes:

minimize
α

f(α) = ‖x−Xα‖1 + γ‖α‖1 . (3)

Solving (3) is however more complex than traditional 2-norm
based LP and state-of-the-art methods for real-time optimiza-
tion have, to some extent, focused on code generation based on
interior-point (IP) methods [12, 15]. The most significant ma-
trix structure these methods exploit is sparsity, i.e., for example
at code-generation exploiting [A 0][xT yT ]T = Ax such that
we avoid computing 0 · y. However, many applications in sig-
nal processing, including the problem (3), are dense. Further,
for IP methods the main bulk of work is to solve a linear sys-
tem of equations in each iteration where additional weighting
matrices are introduced and in particular diagonal matrices for
linear programming. Such diagonal matrices often do not al-
low the possibility of faster direct methods for solving a linear
system [16]. Specifically, IP methods for the SLP problem (3)
would have cubic per iteration time complexity [17]. In par-
ticular, the introduction of the diagonal weighting matrix for
the SLP problem prohibits the exploration of Toeplitz structure
since such matrices do not have a low displacement rank.

Instead of using an IP method we consider an alternating
method of multipliers (ADMM) algorithm. The problem in (3)
can be recast as the following least absolute deviation problem

minimize
α

∥∥∥∥[ γI−X
]
α−

[
0
−x

]∥∥∥∥
1

. (4)

for which the ADMM algorithm is [18]:

α(k+1) = (XTX + γ2I)−1
[
γI −XT

]
(y(k) +

[
0
−x

]
− u(k))

e(k+1) = x−Xα(k+1)

y(k+1) = S1/ρ

([
γα(k+1)

e(k+1)

]
+ u(k)

)
u(k+1) = u(k) +

[
γα(k+1)

e(k+1)

]
− y(k+1) .



Notice that in this ADMM formulation there is no reweight-
ing of X (or XTX) and we may then use fast (and superfast)
methods for solving the linear Toeplitz system [19, 20].

2 Numerical Simulations

For the numerical simulations we will focus on the application
of SLP in speech processing, however, we will apply a objec-
tive measures and the results is then extendable to other appli-
cation scenarios. In particular, we investigated the prediction
gain performance as a function of the number of iterations of
the presented ADMM algorithm and the associated computa-
tional cost assessed by timing.

We processed the vowel and semivowel phones [21] from
the TIMIT database (fs = 16kHz), belonging to 3696 sen-
tences from 462 speakers. We chose the ones of duration of
at least 640 samples (40 ms) for a total of about 40,000 voiced
speech frames. In this investigation, we extend the analysis
in [22] by investigating the prediction gain from the ADMM so-
lution with a different number of iterations and compare with
the IP solution obtained through the CVX+SeDuMi interface
and solver. The regularization parameter γ = 0.12 was ob-
tained through a modified L-curve analysis [23] by using all
except 50 frames picked randomly that will be used as a test
set. We chose N = 250 such that it is possible to cover the
pitch lag range Tp ∈ [34, 231] as done in commercial speech
codecs like the wideband version of the Adaptive Multi-Rate
codec (AMR-WB [24]). The results for the test set is shown
in Figure 1. We can see that at 30 iterations the mean value
of the IP solution falls within the 95% confidence interval of
the ADMM solution, proving that the two algorithms exhibit
statistically the same performance.
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Figure 1: Average prediction gains for a fixed number of iterations for the
ADMM solution. A 95% confidence interval is shown. The IP solutions as
returned by CVX+SeDuMi is independent of the fixed number of iterations K
but shown for the ease of comparison.

Using a C++ implementation, we can run k = 30 iterations
on a standard laptop in approximately 1.7ms in double preci-
sion. This is an indication that an ADMM algorithm for the
SLP problem may be viable for real-time and embedded opti-
mization but further algorithm design investigations are neces-
sary to address this possibility. We note that we are applying
the ADMM algorithm in its straightforward form but several
variants and extensions may be useful for solving the sparse
linear prediction problem efficiently and should be considered
for further investigations. On particular choice is a precondi-
tioned ADMM where the algorithm does not involve solving a
linear system of equation [25].
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