A fast algorithm for high-order sparse linear prediction

T.L. Jensen¹, D. Giacobello², T. van Waterschoot³, M.G. Christensen⁴

¹ Signal and Information Processing, Dept. of Electronic Systems, Aalborg University, Denmark
 ² Codec Technologies R&D, DTS Inc., Calabasas, CA, USA
 ³ Department of Electrical Engineering (ESAT-STADIUS/ETC), KU Leuven, Belgium
 ⁴ Audio Analysis Lab., AD:MT, Aalborg University, Denmark
 tlj@es.aau.dk, giacobello@ieee.org, toon.vanwaterschoot@esat.kuleuven.be, mgc@create.aau.dk

Motivation

- Inherent limitations of standard linear prediction (LP) methods.
- Better signal model and meaningful signal representation for speech achievable by introducing sparsity for the predictor and residual.
- Many applications would require real-time algorithms, possible for embedded implemen-

The considered method

A straight-out-of-the box alternating direction method of multipliers (ADMM) algorithm:

$$\begin{aligned} \alpha^{(k+1)} &= (X^T X + \gamma^2 I)^{-1} \begin{bmatrix} \gamma I & -X^T \end{bmatrix} (y^{(k)} + \begin{bmatrix} 0 \\ -x \end{bmatrix} - u^{(k)} \\ e^{(k+1)} &= X - X \alpha^{(k+1)} \\ y^{(k+1)} &= S_{1/\rho} \left(\begin{bmatrix} \gamma \alpha^{(k+1)} \\ e^{(k+1)} \end{bmatrix} + u^{(k)} \right) \end{aligned}$$

tation. What is the method of choice?

Background

LP provides a compact representation for the signal x[t]:

 $x[t] = \sum_{n=1}^{N} \alpha_n x[t-n] + r[t], \qquad (1)$

- *α* = [*α_n*]^{*N*}_{*n*=1} are the prediction coefficients,
 r[*t*] is the prediction error.
- A common route for estimation of α is via:

 $\min_{\alpha} ||x - X\alpha||_{p}^{p}, \qquad (2)$

- vectorized version of (1) over a certain frame,
- $\|\cdot\|_p$ is the *p*-norm,
- With p = 2: $\alpha^* = (X^T X)^{-1} X^T X$.
- Alternative: capture short-term and longterm redundancies jointly.

$$\boldsymbol{U}^{(k+1)} = \boldsymbol{U}^{(k)} + \begin{bmatrix} \gamma \alpha^{(k+1)} \\ \boldsymbol{e}^{(k+1)} \end{bmatrix} - \boldsymbol{Y}^{(k+1)} \,.$$

Notice that in this ADMM formulation there is no weighting of $X^T X$ and we may then use fast (and superfast) methods for solving the linear Toeplitz system.

(5)

Toeplitz systems

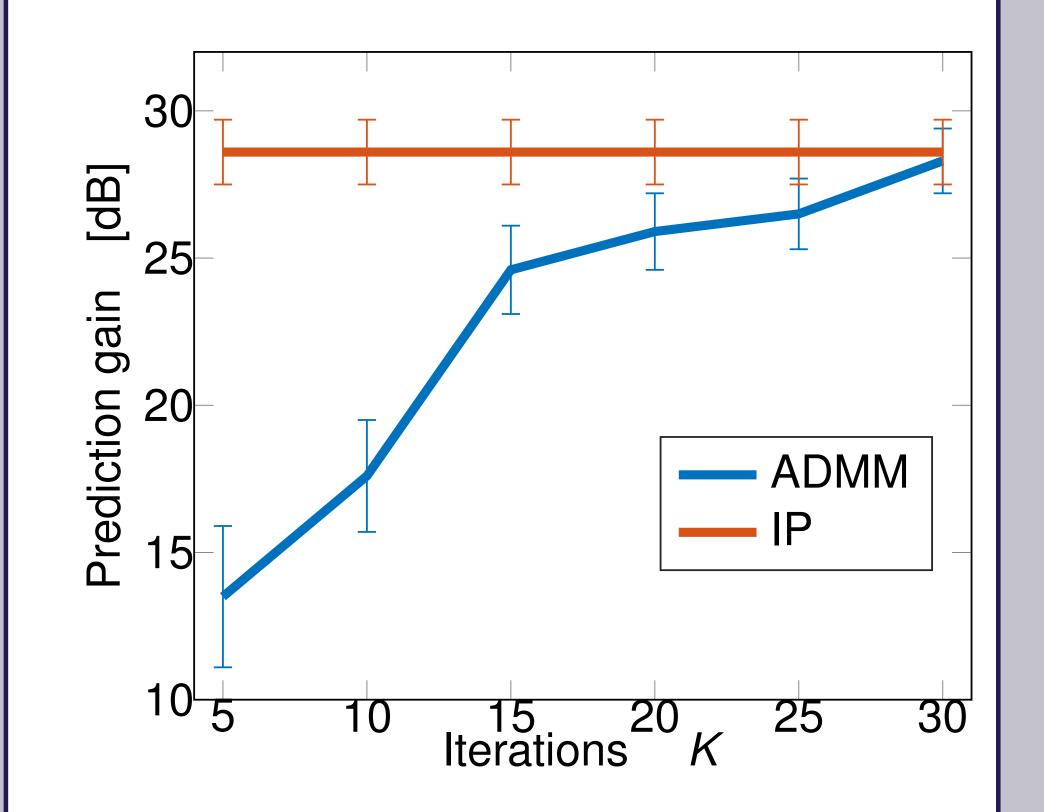
- How to compute $\alpha^{(k+1)}$ efficiently?
- The behavior of y^(k) u^(k) from iteration to iteration is currently unclear, so we consider this as a general right-hand side problem

$$(X^T X + \gamma^2 I)\alpha^{(k+1)} = V^{(k)}.$$
(4)

- ► Using the autocorrelation method, $X^T X + \gamma^2 I = \{t_{|i-j|}\}_{i,j=1}^N = T$ is a symmetric positive definite Toeplitz matrix.
- Levinson algorithm: time complexity $\mathcal{O}(N^2)$.
- Iterative algorithm: same coefficient matrix and changing right-hand side \rightarrow caching.

Numerical simulations

- Processed the vowel and semivowel phones from the TIMIT database (f_s = 16kHz): 3696 sentences, 462 speakers.
- At least 640 samples \rightarrow total of about 40,000 voiced speech frames.
- Investigate prediction gain as a function of the number of iterations.
- Pick 50 frames randomly, rest used for Lcurve analysis to obtain γ .



- Avoid overfitting when increasing the order of the predictor using a sparsity promoting penalty.
- 1-norm penalty on residual offers better modeling for speech.
- A possible convex formulation:

 $\underset{\alpha}{\text{minimize}} \| \mathbf{x} - \mathbf{X} \alpha \|_1 + \gamma \| \alpha \|_1.$ (3)

- Solving (3) is however more "complicated" than traditional 2-norm based LP.
- Matrix structure: dense but X and $X^T X$ are Toeplitz.
- ▶ Interior-point methods: Diagonal weighting $X^T D X$ destroys the Toeplitz structure (and does not have low displacement rank) → resort to $\mathcal{O}(N^3)$ methods for solving linear systems.
- Consider a method where it is possible to exploit the Toeplitz structure.

Gohberg-Semencul representation:

$$\delta_{N-1} T^{-1} = T_1 T_1^T - T_0^T T_0$$

$$T_{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \rho_{0} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \rho_{N-2} & \cdots & \rho_{0} & 0 \end{bmatrix}, \quad (6$$

$$T_{1} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \rho_{N-2} & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \rho_{0} & \cdots & \rho_{N-2} & 1 \end{bmatrix}. \quad (7$$

- The variables δ_{N-1} and $\rho_0, \dots, \rho_{N-2}$ can be obtained using the Szegö recursion in $\mathcal{O}(N^2)$.
- ► T_0 and T_1 are Toeplitz: matrix-vector product can be evaluated using FFTs/IFFTs \rightarrow solve system in $\mathcal{O}(N \log N)$.
- Superfast: substitute the Szegö recursion with an $\mathcal{O}(N \log^2 N)$ algorithm. Trade-off at
- Average prediction gains for a fixed number of iterations for the ADMM solution. A 95% confidence interval is shown. The IP solutions is independent of *K* but shown for the ease of comparison.
- At K = 30 the mean value of the IP solution falls within the 95% confidence interval of the ADMM solution \rightarrow the two algorithms exhibit statistically the same performance.

N = 256.

References

- T. L. Jensen, D. Giacobello, T. van Waterschoot, and M. G. Christensen, "Fast algorithms for high-order sparse linear prediction with applications to speech processing," *Speech Comm.*, vol. 76, pp. 143–156, 2016.
- [2] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, "Sparse linear prediction and its applications to speech processing," *IEEE Trans. Audio, Speech, Language Process.*, vol. 20, no. 5, pp. 1644–1657, 2012.
- [3] J. R. Jain, "An efficient algorithm for a large Toeplitz set of linear equations," IEEE Trans. Acoust., Speech, Signal Process., vol. 27, no. 6, pp. 612–615, 1979.
- [4] G. S. Ammar and W. B. Gragg, "Superfast solution of real positive definite Toeplitz systems," SIAM J. Matrix Analysis. Appl., vol. 9, no. 1, pp. 61–76, 1988.

Timings

- C++ implementation + FFTW3 + MKL. Linear regression for $k \in \{5, 10, 15, 20, 25, 30\}$
- Levinson:
 - $t_k \approx 7 \cdot 10^{-6} + 159 \cdot 10^{-6} k$ [s], $C^2 = 0.999$.
- ► GS: Gohberg-Semencul + Szegö recursion:
 - $t_k \approx 62 \cdot 10^{-6} + 55 \cdot 10^{-6} k$ [s], $C^2 = 0.999$.
- Hand-tailored IP method:
 - $t_k \approx 1.2 \cdot 10^{-3} + 2.0 \cdot 10^{-3} k$ [s], $C^2 = 0.999$