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Motivation
I Inherent limitations of standard linear predic-

tion (LP) methods.
I Better signal model and meaningful signal

representation for speech achievable by in-
troducing sparsity for the predictor and resid-
ual.

I Many applications would require real-time al-
gorithms, possible for embedded implemen-
tation. What is the method of choice?

Background
I LP provides a compact representation for the

signal x [t ]:

x [t ] =
N∑

n=1

αnx [t − n] + r [t ] , (1)

I α = [αn]Nn=1 are the prediction coefficients,
I r [t ] is the prediction error.

I A common route for estimation of α is via:

minimize
α

‖x − Xα‖p
p , (2)

I vectorized version of (1) over a certain
frame,

I ‖ · ‖p is the p-norm,
I With p = 2: α? = (X T X )−1X T x .

I Alternative: capture short-term and long-
term redundancies jointly.

I Avoid overfitting when increasing the order
of the predictor using a sparsity promoting
penalty.

I 1-norm penalty on residual offers better
modeling for speech.

I A possible convex formulation:

minimize
α

‖x − Xα‖1 + γ‖α‖1 . (3)

I Solving (3) is however more “complicated”
than traditional 2-norm based LP.

I Matrix structure: dense but X and X T X are
Toeplitz.

I Interior-point methods: Diagonal weighting
X T DX destroys the Toeplitz structure (and
does not have low displacement rank)→ re-
sort to O(N3) methods for solving linear sys-
tems.

I Consider a method where it is possible to ex-
ploit the Toeplitz structure.

The considered method
A straight-out-of-the box alternating direction method of multipliers (ADMM) algorithm:

α(k+1) = (X T X + γ2I)−1 [γI −X T
]

(y (k ) +
[

0
−x

]
− u(k ))

e(k+1) = x − Xα(k+1)

y (k+1) = S1/ρ

([
γα(k+1)

e(k+1)

]
+ u(k )

)
u(k+1) = u(k ) +

[
γα(k+1)

e(k+1)

]
− y (k+1) .

Notice that in this ADMM formulation there is no weighting of X T X and we may then use fast (and
superfast) methods for solving the linear Toeplitz system.

Toeplitz systems
I How to compute α(k+1) efficiently?
I The behavior of y (k ) − u(k ) from iteration to

iteration is currently unclear, so we consider
this as a general right-hand side problem

(X T X + γ2I)α(k+1) = v (k ) . (4)

I Using the autocorrelation method, X T X +
γ2I = {t|i−j|}N

i ,j=1 = T is a symmetric positive
definite Toeplitz matrix.

I Levinson algorithm: time complexity O(N2).
I Iterative algorithm: same coefficient matrix

and changing right-hand side→ caching.
I Gohberg-Semencul representation:

δN−1T−1 = T1T T
1 − T T

0 T0 (5)

T0 =


0 0 · · · 0
ρ0 0 · · · 0
...

. . . . . .
...

ρN−2 · · · ρ0 0

 , (6)

T1 =


1 0 · · · 0

ρN−2 1 · · · 0
...

. . . . . .
...

ρ0 · · · ρN−2 1

 . (7)

I The variables δN−1 and ρ0, ... , ρN−2 can
be obtained using the Szegö recursion in
O(N2).

I T0 and T1 are Toeplitz: matrix-vector product
can be evaluated using FFTs/IFFTs→ solve
system in O(N log N).

I Superfast: substitute the Szegö recursion
with an O(N log2 N) algorithm. Trade-off at
N = 256.

Numerical simulations
I Processed the vowel and semivowel phones

from the TIMIT database (fs = 16kHz): 3696
sentences, 462 speakers.

I At least 640 samples→ total of about 40,000
voiced speech frames.

I Investigate prediction gain as a function of
the number of iterations.

I Pick 50 frames randomly, rest used for L-
curve analysis to obtain γ.
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I Average prediction gains for a fixed number
of iterations for the ADMM solution. A 95%
confidence interval is shown. The IP solu-
tions is independent of K but shown for the
ease of comparison.

I At K = 30 the mean value of the IP solution
falls within the 95% confidence interval of the
ADMM solution→ the two algorithms exhibit
statistically the same performance.

Timings
I C++ implementation + FFTW3 + MKL. Linear

regression for k ∈ {5, 10, 15, 20, 25, 30}
I Levinson:

tk ≈ 7·10−6+159·10−6k [s], C2 = 0.999 .

I GS: Gohberg-Semencul + Szegö recursion:

tk ≈ 62·10−6+55·10−6k [s], C2 = 0.999 .

I Hand-tailored IP method:

tk ≈ 1.2·10−3+2.0·10−3k [s], C2 = 0.999 .
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