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ABSTRACT

In this work, we propose a novel approach to speech coding
by rewriting the nonlinear analysis-by-synthesis linear predic-
tion scheme as a convex problem. This allows for determining
trade-offs between, on one hand, the reconstruction error and,
on the other, the sparsity of the predictor and the residual used
to parametrize the speech signal. Differently from traditional
coding schemes where the parameters are chosen throughout
multiple optimization stages, our scheme produces a one-shot
parametrization of a speech segment that intrinsically takes
into consideration the voiced or unvoiced nature of a speech
segment providing a better balance between residual and pre-
dictor and, consequently, a more appropriate bit allocation.

Index Terms— Sparse linear prediction, convex opti-
mization, real-time implementation, speech coding.

1. INTRODUCTION

The linear prediction analysis-by-synthesis (LPAS) paradigm
has set the standard for speech coding for the past thirty years
together with his most successful embodiment: code-excited
linear prediction (CELP) [[1,2]. In simple terms, the approach
is to first find the linear prediction (LP) parameters in an open-
loop configuration then searching for the best excitation that
models the prediction residual given certain constraints on it.
This second step is done in a closed-loop configuration where
the perceptually weighted distortion between the original and
synthesized speech segment is minimized. Since the predic-
tor is quantized transparentlyﬂ all the responsibility for the
distortion falls on the coding of the residual. A consequence
of this approach can be seen in today modern codec, e.g., the
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IT.e., when the two versions of coded speech, obtained using the unquan-
tized and quantized predictor, are indistinguishable through listening [3].

AMR-WB coder in its 23.85 kbit/s configuration, allocates
90% of the bits for the residual and only 10% for the predic-
tor [[4]].

Ways to improve the LPAS suboptimal multi-step ap-
proach has been a subject of study since the early days of
speech coding. In [5], a search in the set of quantized linear
predictors (in the LSF domain) follows the quantization of the
residual to reduce the mismatch between original and recon-
structed speech. This procedure can then applied then also to
the residual and iterated several times, as done in [[6]. Other
examples include [7]] and [8] where methods to re-optimize
jointly residual and predictor are introduced. In our earlier
work, we proposed a way to improve performances of the
LPAS loop by re-estimating the predictor after the quanti-
zation of the residual [9]. Hence, the predictor is not seen
as a vocal tract model or as a whitening filter anymore but
rather as a IIR representation of the true truncated impulse
response that generates the reconstructed signal without dis-
tortion in the LPAS equations. In [[10}/11]], we also outlined
the use of high-order sparse predictor as an efficient way to
model a signal spectrum by using only few nonzero samples.
Furthermore, the idea of synergistic ways to encode a speech
signal by providing a sparse residual, rather than a minimum-
variance one, has shown the effectiveness of older, and less
computationally intensive, coding techniques like multi-pulse
code excitation [[12].

In this work, we generalized these idea by proposing
to quantize predictor and residual only after determining a
proper trade-off between the complexity of the residual and
the complexity of the predictor, as measured by the number
of nonzero coefficients to code, i.e., their cardinality or spar-
sity. In particular, working through the LPAS equations, we
are able to linearize this NP-hard problem and formulate it
as a convex optimization problem where the accuracy of the
reconstruction and the sparse representation of the residual
and a sparse representation of the high-order sparse predictor
all appear in the same set of equations.

The paper is organized as follows. In Section 2, we give



a brief overview of the traditional formulation for LPAS on
which most of modern speech codecs are built upon. In Sec-
tion 3, we show how we modified the nonlinear LPAS prob-
lem to fit into a linear optimization problem which can be
solved with convex tools. In Section 4, we show a fast convex
method to solve our LPAS formulation. In Section 5, we pro-
vide experimental results that show the effectiveness of our
formulation in providing more balanced bit allocations. Fi-
nally, Section 6 concludes our work.

2. COMMON FORMULATION

Let the input speech signal be partitioned into frames of
length N, x = [zg.. .a:N_l]T. The first step in the LPAS
formulation is to estimate a linear predictor. The second step
is determining the excitation, usually provided by two code-
books: an adaptive one, responsible for the periodic pitch
contribution, and a fixed one, responsible for the Gaussian-
like part of the excitation [[1].

2.1. Linear Prediction

Linear prediction is based on the following speech produc-
tion model, where a speech sample x(n) is written as a linear
combination of P past samples:

-
z(n) = apz(n —p)+r(n), (1)

where {a, } are the prediction coefficients and r(n) is the pre-
diction error or residual. We consider the optimization prob-
lem associated with finding the prediction coefficient vector
a € RY from a set of observed real samples x(n) for n =

1,..., N so that the prediction error is minimized. Rewrit-

ing the speech production model for a segment of N speech

samples z(n), forn = 1,..., N, in matrix form:
x=Xa+r, 2

the problem becomes:

a= argmin||foa||g+fy||aHl,§, 3)
where:
l'(Nl) ‘T(le].) Sﬂ(lep)
x=| 1 |\ X= : :
I’(NQ) ZZ?(NQ — 1) I(NQ — P)

We will consider the case Ny = 1 and Ny = N+ P, which for
p = 2 is equivalent to the autocorrelation method. Traditional
formulation impose v = 0, and ¢ = 2. In this case, a closed
form solution exist:

4 = argmin ||x — Xa||? = (XTX) ' X", ()]
a

where R = XX is the autocorrelation matrix.

As part of a traditional speech coder, further processing is
usually applied to the solution &, like bandwidth expansion, to
avoid the general shortcomings of traditional linear prediction
[13]. The predictor is the quantized using, e.g., line spectral
frequencies [[1]].

2.2. Codebook Search

Considering the following speech synthesis equations [/1]]:

x = Hy { . } = [y Hy { o } O
where H;, = [H] HJ] is the N x 2N convolution matrix
obtained with the truncated impulse response of a which can
be decomposed into a upper-triangular and lower-triangular
N x N matrices, HY and HY, respectively. Using these def-
initions, we can rewrite (B) as:

x, = Hirp + HY t 1, (6)

where the term HY £, _; is known as the zero input response
(ZIR) and is the quantized contribution of the previous frame.
This is subtracted from the actual signal to quantize, Xg, in
order to obtain what’s known as the rarget signal, which is
given by

ik = H#I‘k. (7)
In the traditional LPAS formulation, the excitation signal at
the input of the short term LP synthesis filter is constructed by
adding two excitation vectors from adaptive and fixed code-
books. The speech is synthesized by feeding the two properly
chosen vectors from these codebooks through the short term
synthesis filter. The best excitation sequence in a codebook is
chosen using an analysis-by-synthesis search procedure (from
which LPAS gets its name) in which the error between the
original and synthesized speech is minimized according to a
perceptually weighted distortion measure, i.e.,

IW (x5 — H (gact + gici)) [15- (8)

The adaptive codebook takes into account the long-term re-
dundancies, behaving similarly to a pitch predictor. Gener-
ally, this contribution is calculated first. Its contribution is
then removed from the target signal and the updated target
signal Xy, is used in the fixed codebook search:

argmin [|x; — grHycy [l

Ck,9f
= argmin —2gex Hie, + gf [Hiei | )
Ck,gf

Clearly, obtaining both gains and codebook entries in (9) is a
combinatorial problem, thus the general approach is to deter-
mine one variable at the time. A multitude of methods exist
for this task (see, e.g., [2]] and reference therein). Finally, the
reconstructed speech will be:

%, = Hf, (¢°¢i + g'ch) + H 1. (10)



3. ALTERNATIVE FORMULATION

We can rewrite the speech synthesis equation in (3)) in order
to include the analysis matrix rather than the synthesis matrix
[T4H16]. Thus, (B) becomes:

O A RVl
= Abx, + Al (11)

where Ay is the N x 2N analysis matrix and can be decom-
posed also into the upper and lower triangular square matrices

0 aP . e “ e a2 a1

AU = 0 0 ap - -

. . . 0 ap

0 0 AU 0 0

and
1 0 0 0 O
. ai 1 0 0 0
Ak: )

aP a’P—l “e “e al 1

with P = N — 1. Given the structure of A}, we can rewrite

(L1) as:

S 1
Xk { =Ty, (12)
ay
where
[ 2ko | Th—1,N Tp—11 |
Th,1 : g o Tpo1
X = [)v(k|Xk} =
Tho Th-1,N
Ll Tk,N | Tk,N—-1 *°° Tk,1 Tk,0
T .
and a; = [a1,...,ap] . We can also see that X;, = x;. The

variables aj, and rj now appear linearly.
We can now write the LPAS optimization problem as fol-
lows:
minimize HI‘k — X — Xkang,
subjectto  |lag|1 <, (13)
el <,
where we can easily control the tradeoff between the quality
of the reconstruction and the sparsity of the representation via

the constraints. Once a solution is found, we can reconstruct
the speech segment using (11)):

%, = (A‘,;)_l (fk _ AExH) . (14)

Note that if we solve the unconstrained formulation of (T3],
we will obtain the trivial solution r = X;, = x; and a = 0.
The choice of v is then critical, as the trivial solution also
fulfills the constraint ||a]|; <, Vd > 0.

3.1. Analogies with Operational Rate-Distortion Theory

From a more general perspective, the problem in LPAS coders
is to minimize the distortion D(-), usually in a perceptual do-
main, between the original signal x and its synthesized ver-
sion X subject to some constraints regarding the rate (omitting
k for clarity):

minimize D(x, X), (15)
subjectto  R(%X) < R,
where R* is the maximum rate allowed. This is known as
operational rate distortion [[17] and applications of it can be
found throughout the literature, notably [[18}/19].

Considering the synthesis matrix H used in the LPAS
equations as a nonlinear transformation of a:

H = &(a), (16)

with ®(-) being the nonlinear operator that maps a into the
matrix H, we can then write the distortion term as:

D(x,%) = |W(x — ®(a))|3, (17)

where W is the matrix that performs the projection in the
perceptual domain.

The problem is now how to define the rate. Since the def-
inition of the distortion is related to the selection of & and T,
we can split the rate accordingly:

R(%) = R(8) + R(?). (18)

We can then consider the cardinality of the two vectors as a
coarse approximation of the rate, and rewrite the rate as:

R(X) = allallo + BI[E[lo- (19)

Considering now (15) and the alternative LPAS formulation
presented in Section 3, the operational rate distortion problem
becomes:

ay, T, = argmin ||r — X — Xa||§ + allallo + Bl|r]lo, (20)
a,r

where we use Lagrange multipliers to define the uncon-
strained minimization problem and we imposed W = I. We
can now see the similarities to our new LPAS formulation in
(T3). The problem become equivalent when p = 2 and the
cardinality (the O-norm) is approximated with the 1-norm, as
done in, e.g., [11]].



4. REAL-TIME CONVEX FORMULATION

Several methods exist for solving efficiently. In this case,
given that the objective is smooth with p = 2 and the gradient
and the projection onto the set {z € R" |||z]|1 < p} can be
calculated efficiently, we employ gradient projection methods
(a special case of proximal gradient methods). These methods
have been used extensively in signal processing applications
[20H235]] and, more recently, for real-time signal processing
[26}127].
Firstly, we cast the problem (T3)) into the form

minimize f(z)
subjectto z € Z. @n

While several variants of fast proximal/projection gradient
method exist for problems of the form @I}, we choose [28,
2.2.19] for simplicity:

. . 1 .
zUt) = p, (y(J) _ va(y(J))> (22)
afy = 3(—ad + \/aj +4a?) (23)
a;(1 —ay)
| = —g—= 24
B; P~ (24)
yUth = g0+ 4 B (z(j+1) _ Z(j)) (25)

where y) is an additional iteration vector of the same size
as z9), a;, B; € R and the Euclidean projection Px(z) of z
onto the set Z is given by

Py(z) = argmin ||z — y||3 . (26)
YEZ

The complexity of this method is dominated by the projection
P7(z) and calculation of the gradient V f(z). In the following
we show how these steps can be computed with linearithmic
time complexity O(N log N).
Acknowledging that the feasible set in is separable,
a € RNV,r € RN¥*! can be projected in two independent
steps. The projection onto the set {z € R"|||z|; < p}is
given as
Pl |zl <0} (2) = Sx(2) @7

where S is the soft-thresholding function
(Se(v))i = sgn(vi) max(|v[ —¢,0) (28)

and A = 0 if ||z||; < p, otherwise A is the solution to the
non-linear equation

> max(|zi| — A, 0) =p. (29)
i=1
Algorithms for solving this non-linear equations often in-
volves sorting z € R™ in magnitude followed by some arith-
metic with no more than O(n) time complexity. Using an

optimal comparison sorting method this approach then has
the worst-case time complexity of O(N log N) and has been
suggested independently in several publications [29,30], and,
more recently, [31].

The gradient is given by

Vf(z)=Vf(agri)
_x, 1" ([xk 1] [i"j +s<k) . G0)

The matrix multiplications, e.g., Xk a, can be also calculated
using Fast Fourier Transform (FFT) filtering with the time
complexity O(N log N).

Let J be the number of iterations, then this algorithm re-
quires 4.J FFTs (4 per iteration for FFT filtering) and 2.J sort-
ing operations.

5. EXPERIMENTAL ANALYSIS

We evaluated the coding scheme in (T3) in terms of coding
efficiency and compared it with a traditional CELP scheme
[32]. We remark that we are not here interested in defining
the best way to encode predictor and residual but rather show
that better ways to allocate bits between predictor and residual
are possible.

We analyzed one hour of clean speech extracted from the
TIMIT database. We chose speakers with different charac-
teristics (gender, age, pitch, regional accent). Without loss
of generality, we resampled at 8 kHz to compare our method
with G.711 and the CELP formulation in [32]. The frame
length was 160 samples (20 ms). The order of the LP filter is
159, according to Section 3. This means we can cover accu-
rately pitch frequencies in the interval [70 Hz, 500 Hz].

The parameters ¢ and ~ in were chosen empirically
based on 50% of the data. The rest of the data was used to
perform the experimental analysis. The speech signal were
normalized at -26 dBFS not to have level dependencies in the
parameters. We used three different versions of our sparse
LP, corresponding to different values of the parameters in the
optimization criterion. Finding tradeoffs between the param-
eters is not easy, differently from traditional sparse linear pre-
diction [11]], there are not close form bounds for § and . We
chose empirically the set of values below.

| METHOD [ 4§ [ ~ |
SpLPAS,; [ 2] .30
SpLPAS,, | 1.9 [ .27
SpLPAS,s | 1.7 [ 21

In order to give an indication of the running time for
the algorithm of Section 4, we implemented it in C++ using
Math Kernel Library vector, BLAS level 1 functions, and
FFTs using FFTW3 [33]] running on an Intel(R) Core(TM)
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Fig. 1. The top pane shows the original and reconstructed
segment of voiced speech. The bottom pane shows the
cardinlaity of the estimated r and a.

15-2410M CPU at 2.3OGHzﬂ With this implementation, it
took approximately 60 [us] to run an iteration or approxi-
mately 1.7 [ms] in total for J = 30 iterations and frame size
N = 160 compared to 934.0 [ms] using an interior-point
method (CVX+SeDuMi), two order of magnitudes faster.

In order to quantify the bit rate, we coded the sparse resid-
ual and sparse predictor using a mix of parametric and non-
parametric modeling, as done in [34]. The average rate was
9 bits per residual coefficient and 14 bits per prediction co-
efficient. The locations of both coefficients were coded as a
memoryless random process with log, (HaH ) and log, (| Ho)
for predictor and residual, respectively. We used 32x32—64
bit operations for the decoder. An example for voiced and
unvoiced speech is shown in Figure 1 and Figure 2. It is par-
ticularly interesting how the cardinality changes in Figure 2,
from a unvoiced segment to a more voiced part. In the be-
ginning the r carries most of the information, hence the high
cardinality, then drops to make more room for the predictor
a, consistently with the increase in sample correlation.

Finally, we compared our LPAS methods (SpLPAS) ob-
tained with different set of parameters with the ITU G.711
waveform coder working at 64 kb/s (u-law PCM) and the
low-complexity CELP presented in [32]. It is easy to see
that our coding scheme allows for generally better bit allo-
cation between the two components (predictor and residual).
Although, the bit rate obtained by the SpLPAS is currently
not competitive, better coders can be built by also exploit-
ing the characteristics of residual and predictor. For example,
for voiced speech, the high-order predictor could be decom-
posed into short-term and long-term components and coded
using traditional methods (e.g., line spectral frequencies [1]]).
Furthermore, we are not applying any perceptual weighting
which would help reducing the bit rate dramatically.

2Code for the proposed algorithm SpLPAS available at https://
github.com/giacobello/SpLPAS

400 800 1200 1600 2000 2400 2800

Fig. 2. The top pane shows the original and reconstructed
segment of unvoiced speech. The bottom pane shows the car-
dinality of the estimated r and a.

Table 1. Comparison in terms of average cardinality (||a]|o,
|lr]lo), average bit rate for each component (R, R,), total
average bit rate Ryo¢, and Mean Opinion score for the speech
coding algorithm considered.

| METHOD | [[aflo | [Irlo | Ra | R [ Riot | MOS |
G.711 N/A 64 | 422
CELP [32] | 10+1 26 4 12 16 | 3.97
SpLPAS,, 15 17 | 18.1 | 15.3 | 388 | 4.07
SpLPAS,, 13 14 [ 156 | 126 | 329 | 3.84
SpLPAS,3 10 11 [ 123 10.1 | 232 | 3.29

6. CONCLUSIONS

We have introduced an alternative formulation for the analysis-
by-synthesis linear prediction scheme commonly used in
speech codecs. This formulation allows for a one-step es-
timation of predictor and residual with the possibility of
choosing the right distortion level and sparsity, intimately
related to the bit rate, for each speech frame. The idea to
perform lossy coding only in the optimization step, where we
have full control over the parametrization, and then proceed
to encode the predictor and residual losslessly. This allows
to choose better representations (and, in turn, bit allocations)
between predictor and residual according to the nature of the
speech segment.
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