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Motivation
Linear Prediction Analysis-by-Synthesis (LPAS)

I LPAS at the core of speech coding technology.

I CELP (code-excited linear prediction) probably the most
successful embodiment of LPAS:
I linear prediction (LP) parameters are found in an open-loop

configuration,
I the excitation models the prediction residual and is found in

a closed-loop configuration,
I use of perceptually weighted distortion between the original

and synthesized speech segment to find the best excitation.

I Since the predictor is quantized transparently all the
responsibility for the signal approximation falls on the
choice of the residual.

I Is the prediction model good enough? Net mismatch in bit
allocation between predictor and residual (e.g., AMR-WB
23.85 kbps: 90% vs 10%).
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Proposed Solution
Sparse Linear Prediction in LPAS

I Better predictive model → more balanced bit allocation

I Use of sparse linear prediction1 to define a new LPAS
framework:

1. high-order sparse predictor allow for modeling long-term
and short-term redundancies;

2. sparse residual allows for direct sparse encoding (no
quasi-Gaussian codebook).

I The predictor estimation is included in the distortion
minimization of the LPAS scheme.

1Daniele Giacobello et al. “Sparse linear prediction and its applications
to speech processing”. In: IEEE Trans. Audio, Speech, Lang. Proc. 20.5
(2012).
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Proposed Solution
LPAS as a convex optimization problem

I Weighted minimization of the difference between the
original and modeled waveform:

‖W(x− x̂)‖22.

I Sparse constraints applied to a high-order predictor and on
the residual used to parametrize the signal:

α‖â‖0 + β‖r̂‖0 < δ.



5
Proposed Solution
Rate-distortion analogies

I We can write the distortion term as:

D(x, x̂) = ‖W(x−Φ(â)r̂)‖2,
I H = Φ(a) is the synthesis matrix used in the LPAS

equations obtained from the impulse response of a;
I W is the matrix that performs the projection in the

perceptual domain.

I The distortion is related to the rate used for â and r̂:

R(x̂) = R(â) +R(r̂).

Considering the cardinality proportional to the rate:

R(x̂) = α‖â‖0 + β‖r̂‖0;

I D(·), R(·) terms for operational rate-distortion theory2.
2P. Prandoni and M. Vetterli. “R/D optimal linear prediction”. In:

IEEE Trans. Speech and Audio Proc. 8.6 (2000).
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Conventional LPAS Formulation
Linear Prediction

I Consider the speech production model where a sample of
speech x(n) is a linear combination of P past samples:

x(n) =

P∑
p=1

apx(n− p) + r(n),

where {ap} are the prediction coefficients (order P ) and
r(n) is the prediction error.

I The optimization problem to estimate {ap} is

minimize
a

‖x−Xa‖qq + γ‖a‖kk,

x =

 x(N1)
...

x(N2)

 ,X =

 x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)

 .
I P , N , N1, N2, q, k, γ, are chosen according to the problem.
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Conventional LPAS Formulation
Codebook Search (1/2)

I The synthesis equations in CELP coders follow the form3:

xk = Hk

[
r̂k−1

rk

]
=
[
HU

k HL
k

] [ r̂k−1

rk

]
,

where Hk is the N × 2N convolution matrix obtained with
the truncated impulse response of a. Thus:

xk = HL
krk + HU

k r̂k−1,

where the term HU
k r̂k−1 is the zero input response.

Subtracting it from the signal to quantize xk, we obtain
the target signal:

x̃k = HL
krk.

3W. B. Kleijn, D. J. Krasinski, and R. H. Ketchum. “Fast methods for
the CELP speech coding algorithm”. In: IEEE Trans Acoustics, Speech,
Sig. Proc. 38.8 (1990).
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Conventional LPAS Formulation
Codebook Search (2/2)

I The target signal is reconstructed by adding two excitation
vectors:

‖W
(
x̃k −HL

k

(
gac

a
k + gfc

f
k

))
‖22,

where
I gac

a
k contribution from the adaptive codebook,

I gfc
f
k contribution from the fixed codebook,

I W is the perceptual weighting matrix.

I Combinatorial problem generally solved one variable at the
time.
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Alternative Formulation
New synthesis equations for LPAS (1/2)

I If we consider the conventional IIR formulation4 for the
LPAS synthesis equations:

xk = Hk

[
r̂k−1

rk

]
→ rk = Ak

[
x̂k−1

xk

]
,

rk =
[
AU

k AL
k

] [ x̂k−1

xk

]
= AL

kxk + AU
k x̂k−1.

I For high-order filters with P = N − 1:

A
L
k =


1 0 0 · · · 0 0
a1 1 0 0 · · · 0

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.
aP aP−1 · · · · · · a1 1

 , A
U
k =



0 aP · · · · · · a2 a1

0 0 aP · · · · · ·
.
.
.

.

.

.

.

.

.
. .
.

. .
. 0 aP

0 0 · · · · · · 0 0

 .

4T. Bäckström. “Comparison of windowing in speech and audio coding”.
In: IEEE WASPAA. 2013.
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Alternative Formulation
New synthesis equations for LPAS (2/2)

I Given the structure of Ak, we can rewrite:

rk = Ak

[
x̂k−1

xk

]
→ X̄kak = rk,

where:

X̄k =
[
x̌k|X̌k

]
=



xk,0 x̂k−1,N · · · · · · x̂k−1,1

xk,1
...

. . .
. . . x̂k−1,2

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

...
. . . xk,0 x̂k−1,N

xk,N xk,N−1 · · · xk,1 xk,0


,

and ak = [1, a1, . . . , aP ]T . We can see that x̌k = xk.
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Alternative Formulation
Sparse LPAS

I The optimization problem becomes (omitting k):

minimizea,r ‖r− x̌− X̌a‖22
subject to ‖a‖1 ≤ δ

‖r‖1 ≤ γ

I 1-norm chosen as a convex relaxation of the 0-norm.

I Easy to control tradeoff between the quality of the
reconstruction (≈ distortion) and the sparsity of the
representation (≈ rate).

I One step estimation for ak = [a1, . . . , aP ]T and
rk = [r1, . . . , rN ]T (P = N − 1).
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Solving Sparse LPAS
Real-time Convex Formulation

I The gradient is given by

∇f(x) = ∇f(a, r) =
[
X̌ −I

]T ([
X̌ −I

] [a
r

]
+ x̌

)
.

I We solve the SpLPAS problem using a simple variant of the
fast gradient projection method5:
I the objective is smooth (quadratic),
I the gradient and the projection onto the set {x | ‖x‖1 ≤ ρ}

can be calculated efficiently,
I use of a fixed step-size ensures convergence and avoids an

iterative line-search algorithm.

I For a problem with N = 160 and P = 159, the primal
problem by an interior-point method (CVX+SeDuMi)
takes, on average, 934.0 ms vs 1.7 ms of the fast method.

5Yuri Nesterov. Introductory Lectures on Convex Optimization, A Basic
Course. Kluwer Academic Publishers, 2004.
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Experimental Evaluation
Setup

I We analyzed one hour of clean speech extracted from the
TIMIT database:
I different gender, age, pitch, regional accent;
I normalized at -26 dBFS;
I resampled to fs = 8kHz;
I frame size N = 160 (20 ms).

I Order P = 159 (cover pitch periods with [70 Hz, 500 Hz]).

I Values of δ and γ in the table chosen from 50% of the data.
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Experimental Evaluation
SpLPAS configurations

I We define three versions of the SpLPAS algorithm

minimizea,r ‖r− x̌− X̌a‖22
subject to ‖a‖1 ≤ δ

‖r‖1 ≤ γ

with

METHOD δ γ

SpLPASv1 2 .30

SpLPASv2 1.9 .27

SpLPASv3 1.7 .21

I No close form bounds for δ and γ, values are found
empirically and are related to the desired sparsity.

I If δ = 0 and γ = 0, trivial solution a = 0 thus r = x̌ = x.
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Experimental Evaluation
Encoding r̂ and â

I Once we obtained r̂ and â, we quantize them losslessly
using a simple variable-rate coding/decoding structure6.
I Lossy compression is controlled uniquely by defining

δ and γ;
I mix of parametric and nonparametric modeling for

quantizing a and r;
I binary mask (location of coefficients) coded as a memoryless

random process with log2

(
N−1
‖a‖0

)
and log2

(
N
‖r‖0

)
;

I the encoding/decoding uses 32×32→64 bit operations;
I use of the same encoding/decoding scheme for all

configurations.

I Average of 9 bits per r and 14 bits per a.

I Stability of the predictor not necessary!

6F. Ghido and I. Tabus. “Sparse modeling for lossless audio
compression”. In: IEEE Trans. Audio, Speech, Lang. Proc. 21.1 (2013).
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Experimental Evaluation
Example: SpLPASv1 for Voiced Speech
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Figure: Top pane shows the original and reconstructed speech signal.
Bottom pane shows the cardinality of the estimated r and a.
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Experimental Evaluation
Example: SpLPASv1 for Unvoiced Speech
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Figure: Top pane shows the original and reconstructed speech signal.
Bottom pane shows the cardinality of the estimated r and a.
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Experimental Analysis
Rate

We compare SpLPAS with the G.711 waveform coder (µ-law
PCM), and the low-complexity CELP7. PESQ was used for
MOS scores. The rate is expressed in kbps.

METHOD ‖a‖0 ‖r‖0 Ra Rr Rtot MOS

G711 N/A 64 4.22

CELP 10+1 26 1.8+1.2 12 16 3.97

SpLPASv1 15.4 17.3 18.1 15.3 38.8 4.07

SpLPASv2 13.1 14.0 15.6 12.6 32.9 3.84

SpLPASv3 10.2 11.5 12.3 10.1 23.2 3.29

Code for SpLPAS available at https://github.com/giacobello/SpLPAS

7Juin-Hwey Chen. “Toll-quality 16 kb/s CELP speech coding with very
low complexity”. In: IEEE ICASSP. 1995.

https://github.com/giacobello/SpLPAS
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I New formulation for LPAS allows for
I one-step estimation of predictor and residual,
I possibility of choosing the right sparsity and distortion level

for each speech frame,
I better tradeoffs between a and r (R/D interpretation).

I Encoding/decoding scheme should be better tailored for
the problem at hand (e.g., the predictor can be factorized
in short-term and long-term components).

I Defining a proper W can help reducing the bit rate
dramatically!

I High-order predictor are promising for audio as well
I possibility of using our scheme for joint speech-audio coding

(current approaches switch between MDCT-based and
ACELP-based depending on the content8).

8Max Neuendorf et al. “MPEG Unified Speech and Audio Coding - The
ISO/MPEG Standard for High-Efficiency Audio Coding of All Content
Types”. In: Audio Engineering Society Convention 132. 2012.


