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Abstract—In this paper, we propose an expectation-
maximization algorithm to perform online tracking of moving
sources around multi-microphone devices. We are particularly
targeting the application scenario of distant-talking control of a
music playback device. The goal is to perform spatial tracking of
the moving sources and to estimate the probability that each of
these sources is active. In particular, we use the expectation-
maximization algorithm to capture the statistical behavior of
the feature space representing the ensemble of sources as a
Gaussian mixture model, assigning each Gaussian component
to an individual acoustic source. The features used exploit a
wide range of information on the sources behavior making the
system robust to noise, reverberation, and music playback. We
then differentiate between desired and interfering sources. The
spatial information and activity level is then determined for
each desired source. Experimental evaluation of a real acoustic
source tracking problem with and without music playback shows
promising results for the proposed approach.

I. INTRODUCTION

Tracking multiple moving sources is an essential component
of modern multi-microphone speech enhancement systems [1].
Examples on how to use the tracking information can be
seen in, e.g., adaptive beamforming [2] or post-filtering [3].
These solutions are generally based on classical spatial filters,
computed as a closed-form or adaptive solutions of a specific
optimization problem. These generally make the filter unable
to adapt fast enough to ever changing acoustic scenarios [4].
Alternatively, parametric spatial filters rely on instantaneous
estimates of model parameters, notably the direction of arrival
(DOA) or, equivalently, time difference of arrival (TDOA),
e.g., [5], [6]. These allow the system to adapt quickly to
the changing scenario but violate the underlying signal model
when multiple sources are active at the same time [7], [8].
It is, however, possible to localize and classify sources and
move past the rigid assumptions of these two paradigms. This
is what is usually referred to as informed spatial filtering [9],
[10], [11].

Spatial localization identifies prominent sources in the cur-
rent acoustic scene based on the set of features chosen, e.g.,
TDOA. In [10] and [12], Gaussian mixture models (GMMs),
parametrized in a different feature set from the one used in
this work, are used. In [13], by modeling the generalized
cross-correlation (GCC) [14] with a GMM, they are able to
track multiple sources avoiding possible multiple maxima. The

spatial tracking error of the TDOA is generally assumed to be
Gaussian. In this case, it is easy to see that the least-squares
metric provides the maximum likelihood (ML) estimate of the
speaker location [15]. However, methods moving away from
this strict assumption exist, notably [16] and [17]. In these
papers, the authors track sources using particle filters with
likelihood models derived from both the GCC function and
the time-delay estimate (TDE), respectively.

After spatial localization and tracking, classification is re-
quired to differentiate desired from interfering sources such as
reverberation, background noise, interfering talkers, or music
played back by the device. In [18], a ML approach was derived
based on a probabilistic interpretation of the GCC function.
This was scored against models representing speech and noise.
This feature is then combined with the Steered Response
Power (SRP), creating a naive Bayes classifier to identify
active and interfering talkers.

In this paper, we propose a statistical framework to perform
online source tracking in a multi-microphone smart loud-
speaker device, e.g., for distant-talking control [19], [20]. The
goal of the system is to track desired and interfering sources
and to estimate the probability that each source is active. We
define desired sources (DSs) as those which should eventually
remain untouched by the spatial noise suppression system,
therefore including the music playback feeding back in the
microphones.

We use a GMM to capture the statistical behavior of an en-
semble of sources where each source is seen as a multivariate
Gaussian component. We will describe the online estimation
of model parameters, which allows our statistical model to
track non stationary processes. We will also discuss the design
of feature vectors which promote separation between distribu-
tions. The use of a mixture model provides a low-complexity
method of tracking the spatial location of acoustic sources,
while also maintaining estimates of their online statistical
behavior. We then evaluate the source membership using the
GMM model obtained. After source classification, TDOAs of
each DS can be extracted from the statistical model, along
with the probability that each source is active.

This paper is organized as follows. Section II presents the
first stage of the source tracking system, deriving the statistical
modeling of acoustic sources. Section III presents the second



stage of the algorithm, where inference of the DS behavior
is discussed. Experimental results are provided in Section IV,
and conclusions are given in Section V.

II. STATISTICAL MODELING OF ACOUSTIC SOURCES
A. Feature Vector Design

The first stage of our algorithm consist in extracting mean-
ingful features from the acoustic scenario to model and track
the DSs using the statistical framework provided by the
GMMs.

o Time Difference of Arrival (TDOA)
Source detection and tracking relies heavily on spatial
information, which can be represented as the DOA or
as the TDOA [1]. Numerous methods based on spectral
cross-correlation exist for estimating the TDOA, e.g., the
GCC function [14]. Such correlation-based approaches
generally involve finding the TDOA which maximizes
a cost function designed to capture similarity between
signals observed at different microphones [18], [21].

o Correlation Measures
The correlation-based cost functions discussed above can
be leveraged for source tracking in an alternative way
by measuring the maximum cost corresponding to the
selected TDOA. Such measures can be expected to show
small values for diffuse sources, but large values for point
sources which are more consistent with DSs.

e Predictors of Speech Activity
These can be used to discriminate between speech and
non-speech acoustic sources. For example, voice activity
detectors (VADs) can provide measures which convey the
likeness of a particular acoustic signal to speech. Fur-
thermore, certain discriminative features used in VADs,
i.e., pitch information [22], can be leveraged for speaker
identification [23].

o Predictors of Loudspeaker Activity
The acoustic activity of the loudspeaker, i.e., if the
loudspeaker playback is active, can be estimated from
the residual of the acoustic echo cancellation, a neces-
sary step to improve the signal at the microphone. The
coherence between the music playback and the output of
the AEC (residual echo) measures this activity [24].

B. Statistical Framework

The proposed statistical modeling assumes that a feature
vector x, is extracted from the observed acoustic signals
in frame n. The vector x,, is designed to capture important
characteristics about the current acoustic scene and its design
follows the discussion in Section II-A. Here, it is assumed
to be a generalized frame-specific sample so that statistical
modeling is applied on the frame level.

A GMM is fully parametrized by the set:

aw]W}a (1)

where p,,, 3,,, and w,, are the mixture means, covariance
matrices, and priors, respectively, and M is the number of
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mixtures. The GMM likelihood conditioned on A is expressed
as [25]:

p(x,|A) = Z wmN
where N (x,,; i, 3) denotes the evaluation of a single Gaus-
sian distribution. In order to apply a GMM in statistical anal-
ysis, parameter estimation of A must be performed based on
training data. Due to the uncertainty associated with mixture
membership of training samples, the parameter estimation is
typically performed using the EM algorithm [26].
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C. Online/Recursive Parameter Estimation

Similarly to what proposed in other online spatial tracking
methods, e.g., [10], [12], [27], we base the recursive estima-
tion of the GMM parameters on the maximum a posteriori
(MAP) criterion proposed in [28]. Let A(Y) denote the set
of parameters estimated from Aj; n) = {X1,...,Xy} and
XNs1,N+K] = {XN11,---,XNpK} @ new set of feature
vectors measured in the acoustic space. Note that K =
corresponds to applying parameter estimation for every new
feature vector. A MAP estimate of ACVT5) can be obtained
recursively based on the data in X1 n4 k] Assuming to
know p (AY) | Xy ) ), the distribution of the parameters at
instant N:
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where sufficient statistics of X|yy1 v are given by:
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where P A%V ) | xn+k ) is the posterior probability of
mixture m, and the adaptation step size is given by

am = Emo/ (Bmo+ Nuld)). 5)

To reduce long-term data dependencies, we can simply
applying a maximum limit to the term N anN).

D. Merging and Splitting of Gaussian Components

Modeling non stationary processes using recursive estima-
tion may require online merging or splitting of the GMM
components. In the context of source tracking, recursive es-
timation may lead multiple components to represent a single



acoustic source. Thus, merging is applied to those mixtures
which are statistically similar [29], [10]. Recursive estimation
may also produce mixtures with low priors or highly peaked
covariances, which effectively become marginalized during
statistical analysis. Thus, the use of thresholds to delete mix-
tures which do not meet minimum prior values or covariance
spreads is an efficient way to guarantee proper statistical
modeling without adding complexity or storage burden [30],
[31]. In the case where one component might be modeling
multiple sources, generally if the prior, mean, and variance
are above a certain threshold, the Gaussian distribution is split
into two using the method described in [29].

III. INFERENCE OF DESIRED SOURCE BEHAVIOR

The GMM obtained through the method presented in Sec-
tion II implicitly embeds the spatial location of the sources,
Lps, and the posterior probability that the sources are active,
Pps. In order to track the DSs based on the GMM modeling
of the acoustic space, the corresponding mixtures must be
identified. The proposed solution allows for multiple DSs. For
notational brevity, we discuss the system in the context of
a single DS. We propose to use the minimum Mahalanobis
distance [32] between a point z, in the parameter space and
the Gaussian mixtures representing the space at instant n:

ips = argmin \/ (2 — ) S (2 — ). (6)

Once mpg, the distribution with smaller distance to z,,, has
been identified, the DS can be tracked and its level of activity
can be inferred. The spatial location of the DS, Lpg, is
determined as the TDOA element of the GMM mixture mean
for mps (then converted to DOA). The probability of DS
activity is estimated as the posterior probability of the DS
mixture conditioned on z,,:

U}mN (Zn; Mo s Em) |m:ﬁms (7)
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A. Extension to Frequency-Based Activity Level

Pps = P (Mmps | 2,,) =

The source tracking system produces time frame DS activity
probabilities. If these values are used for controlling other
processing, e.g., adaptive beamforming, greater spectral res-
olution of Ppg may be advantageous. Spectral resolution can
be introduced by modeling specific frequency-based feature
vectors, wherein a single frame n yields multiple features,
Xn,f, from various frequency bands where f denotes the band
index. In this case, the MAP adaptation presented in II-C is
applied so that A(N*1) is updated based on AN) and the set
{Xn1,-..,Xn,r}, where K denotes the number of frequency
bands.

IV. EXPERIMENTAL EVALUATION

We evaluated the proposed algorithm in a rectangular
meeting room of size 7.5mx6.2mx2.6m with RTgy = 0.51s
calculated with [33]. The room contained a centrally located
5mx2m rectangular table where a Sonos™ One smart speaker
was positioned on top (of size approx. 16cmx 12cmx12cm).

We use two microphones on the diameter of the 6-microphone
circular array of 72mm diameter laying on top of the speaker.

The signal at the microphones was acquired at 16 kHz and
the spectro-temporal representation was obtained by window-
ing the microphone signals in 512 samples using a Hamming
window with 50% overlap with a 512 FFT. When the music
is playing, we employed the STFT-domain echo canceller
presented in [34] implemented using the robust adaptation
proposed in [35] to avoid using double-talk detection. Fur-
thermore, we applied the residual echo suppressor presented
in [36] to cope with the possibility of echo leakage. The
feature vector, calculated to estimate the posterior probability
of source in (7), is a 5-dimension vector. This comprised of the
TDOA and associated correlation measure (CDOA) obtained
with the algorithm presented in [14], a VAD measure obtained
through a combination of spectral entropy and energy [37],
the result of the likelihood ratio (LR) tests of the residual
echo canceller (RES) [36], and a autocorrelation-based pitch
estimate, obtained using [38], done after the RES algorithm.
The adaptation term N in (5) was set to give the system a
forgiving factor of 250ms (tuned accordingly to the experiment
at hand). The parameter space was modeled initially using a
GMM with three Gaussian components empirically initiated.
For each new frame, we applied the recursive estimation of
mean, covariance, and priors presented in Section II-C. To
avoid local maxima in fitting the GMM model to our parameter
space, we used the Gaussian splitting and merging criterion
presented in [29].

In the first experiment, we considered a static talker (DS)
located 60cm away. A static interfering talker (IS) was located
120cm away, with an angle of incidence of 90° relative to the
DS. To simulate an interaction with the device, the DS was
active in 10s intervals, while music (PB) was played back on
from the loudspeaker in Ss intervals. The IS was active in
15s intervals. In the primary microphone signal, the DS was
observed to be 5dB louder than the IS, the music was picked
randomly from a TOP40 playlist and kept at a SPL level of
moderate listening, giving approximately a 20dB music-to-
DS ratio (roughly 5dB after AEC). Fig. 1 illustrates a 36s
segment from the captured primary microphone signal. The
highlighted part correspond to acoustic source activity, where
green, red, and black correspond to DS, IS, and PB (after
AEC and RES), respectively. Fig. 2 provides a snapshot of
model parameters from the GMM during the test signal at 10s.
The panels show the projections of the multivariate mixture
distributions onto individual feature subspaces. Here, mixture
1 (green) is tracking the DS, mixture 2 (red) is tracking the
IS, and mixture 3 (black) is capturing diffuse background
noise and music playback (PB). Note that individual features,
especially the TDOA, were not able to provide clear separation
between mixtures during the source classification phase. The
higher distance from the microphone of the IS makes the
sound diffuse (top pane) but it is easier to discriminate using
the CDOA (second pane). Music and speech are easier to
classify using the VAD values (consistent with music/speech
differences in spectral entropy). Thus, the use of multivariate
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Fig. 1. Input audio signal after AEC. Highlighted is the presence of desired
source (green), interfering talker (red), and music playback (black).
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Fig. 2. An illustrative snapshot of the model parameters from the 5-
dimension GMM with three mixtures during the signal segment from Fig. 1
at 10s. The panels show the projections of the multivariate Gaussian mixture
distributions onto individual feature subspaces (from the top pane: TDOA,
CDOA, VAD, LR, PITCH). The distribution modeled are the desired source
(green), interfering talker (red), and downlink playback (black).

features introduced complementary information and increases
mixture separation. The pitch measure helped particularly in
discriminating among the two talkers, while the music mixture
resembles a flat distribution. The LR, calculated at the RES,
works really well in discriminating PB, while gives roughly
same likelihood values for the DS and IS sources.

In the second experiment, a talker was reciting the alphabet
while moving slowly through the room (one full rotation
of the room in 45s). We then increased the speed of the
speaker through the room, performing one full rotation around
the table in 25s. We tracked the ground truth angle with a
laser digital angle finder and we filmed the process with a
camera to manually label the ground truth angle (similar to the
AV16.3 dataset [39]). Since we were interested in the source
tracking performance during music playback, the experiment
was repeated with and without music playing from the device.
Again, the music was picked randomly from a TOP40 playlist
with approximately a -20dB speaker-to-music ratio at the
microphones. We repeated these recordings 5 times with 10
different speakers, for a total of 100 trials. In both experiments,
we considered the measurement bias of the ground truth angle
to be negligible. We also neglected the front-back TDOA

TABLE I
LOCALIZATION ACCURACY IN TERMS OF ROOT-MEAN-SQUARE ERROR
(RMSE) oF THE DOA.

RMSE DOA [°]
Slow Moving Fast Moving
Music Off | Music On | Music Off | Music On
GMM;p 9.3 13.5 8.8 18.2
GMM,p 54 6.9 5.8 6.7
GMM;p 4.3 4.1 4.2 4.9
[16] 4.2 74 5.1 10.2
[17] 54 8.7 7.3 11.4

uncertainty of the measurement as not particularly problematic
in our controlled scenario. We compared three GMM-based
methods for tracking with a different number of features. In
the first approach, GMM;p, we used TDOA and CDOA, the
most intuitively features to perform tracking. In GMMyp, we
added VAD and RES, and we then added the pitch to measure
in GMMs;p. In Table I, the root-mean-square error (RMSE)
of the resulting DOA estimated with the proposed method is
shown. We also compared with two other popular nonlinear
spatial tracking algorithms [16], [17]. The results of Table I
outline the flexibility of the GMM approach and the choice of
features. Differently from most spatial tracking methods, like
[13] and [12], our feature vector includes terms different from
the TDOA that help the estimation inside the EM procedure
by providing speech activity information directly into the mul-
tivariate GMM, as well as pitch information, which has been
known as a low-cost method to perform speaker identification
[40]. In GMMyp, we had a clear jump in performance. It is,
however, very interesting noting that including the pitch to
measure the coupling between loudspeaker and microphone
in GMMsp gave a more notable improvement over methods
like [16] and [17].

V. CONCLUSION

We proposed a source tracking algorithm based on the
GMM modeling of features extracted from the acoustic
space. The algorithm, in particular, targets the case of voice-
controlled playback device, i.e., a smart speaker. Carefully se-
lecting a feature vector that allows for discriminating between
residual echo, desired source and interfering sources allows
for a flexible amount of separation of the acoustic sources,
not possible with just the TDOA, and the overall complexity
of the system. The use of voice activity metrics, residual echo
likelihood information and pitch information has shown, in
particular, to enrich the GMM model in the discrimination
allowing for a relatively low RMSE in the DOA estimate
during music playback at -20 dB of signal-to-music ratio with
a talker moving fairly fast through the room.
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