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ABSTRACT

In this paper, we consider methods for improving far-field speech
recognition using dereverberation based on sparse multi-channel lin-
ear prediction. In particular, we extend successful methods based on
nonconvex iteratively reweighted least squares, that look for a sparse
desired speech signal in the short-term Fourier transform domain,
by proposing sparsity promoting convex functions. Furthermore, we
show how to improve performance by applying regularization into
both the reweighted least squares and convex methods. We evaluate
the methods using large scale simulations by mimicking the applica-
tion scenarios of interest. The experiments show that the proposed
convex formulations and regularization offer improvements over ex-
isting methods with added robustness and flexibility in fairly differ-
ent acoustic scenarios.

1. INTRODUCTION

Speech dereverberation has become an integral component of front-
end processing techniques for automatic speech recognition (ASR).
In particular, the recent advent of smart loudspeakers like the Ama-
zon Echo, Google Home, and Sonos One, has pushed the robust-
ness required in far-field ASR, as the user expects the same level of
performance in multiple condition, including being at different dis-
tances in different acoustic environments [1]. This makes derever-
beration one of the most prominent algorithm for enabling far-field
human-computer interaction [2].

Several approaches have been proposed for speech dereverber-
ation (see, e.g., [3] and references therein). The ones based on
acoustic equalization, notably [4], can theoretically, achieve perfect
dereverberation, being based on the estimation of the inverse of
the room impulse responses (RIRs) between the source and micro-
phones. These problems are, however, ill-conditioned and highly
sensitive to RIR estimation errors [5]. More robust blind derever-
beration methods based on multi-channel linear prediction (MCLP),
applied in the short-term Fourier transform (STFT) [6, 7], have re-
ceived attention lately as they do not require a priori knowledge of
the room acoustic and are relatively easy and cheap to implement [1].

MCLP approaches in the STFT domain assume that, for each
frequency bin, the reverberant component can be predicted from
previous samples. Conventional MCLP is based on the minimiza-
tion of the `2 norm of the error between observed and predicted
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signal, the desired speech. This is consistent with the maximum-
likelihood assumption of the error being i.i.d. complex Gaussian
with unknown variance [8]. In [6], the weighted prediction error
(WPE) method proposes to estimate the variance allowing for a bet-
ter model that, in turn, gives better performance in terms of dere-
verberation [2]. Based on different statistical assumptions, the work
in [7] sets out to find a sparse desired speech signal belonging to
the complex generalized Gaussian (CGG) distribution [9], resulting
in the WPE-CGG method. By employing the iteratively reweighted
least-squares (IRLS) algorithm (see, e.g., [10]) to solve the sparse
approximation problem in [7], it also shows that the WPE method
is equivalent to the WPE-CGG when the reweighting is done target-
ing the `0 quasi norm [11]. It is then interesting to see the MCLP
problem from an empirical perspective; the STFT of clean speech
is widely accepted to be sparse or belonging to a heavy-tailed dis-
tribution [12], while the reverberant speech appears like a blurred
version of it. Modeling the problem in a MCLP framework allows
to estimate a sparse component, the desired speech, while modeling
the reverberation as a convolutive process which is approximated by
the predicted speech. Both works in [6] and [7] were then extended
to the multiple-input multiple-out (MIMO) case, in [13] and [14],
respectively, which makes them desirable to work with other type of
speech enhancement algorithm in commercial devices.

In this paper, we propose to revisit the MIMO MCLP scheme
presented in [14] and propose new solutions based on convex for-
mulations. In [14], approximations of mixed quasi norms are con-
sidered to enforce group sparsity across time where the groups are
the magnitude of the desired signal across all the channels. In this
work, we focus on the convex formulations of the `1,2 and `1,1 mixed
norms on the desired signal. To make sure that a proper model is
chosen for the predictor, we also include a model order selection cri-
teria by imposing sparsity on the predictor. The paper is organized as
follows. In Section 2 and 3, we give a overview of the MCLP frame-
work and the current solutions available. In Section 4, we present
our convex methods to solve the sparse MCLP problem. In Section
5, we present our simulation framework and the experimental results
providing our conclusions.

2. FUNDAMENTALS

We consider an acoustic system composed of one speech point
source and M microphones. The signal at the m−th microphone at
time n is

xm(n) =

M∑
m=1

rm(n) ∗ s(n) + em(n), (1)

where s(n) is the clean speech signal, rm(n) is the RIR between
the speech source and the m−th microphone, and ∗ is the convolu-
tion operator. We focus our attention on so-called utterance-based
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batch processing techniques where a full reverberant speech file is
processed all at once [15]. Denoting s(k, n) as the STFT of the
clean speech, with frame index n ∈ {1, . . . , N} and frequency bin
index k ∈ {1, . . . ,K}, the reverberant speech signal at the m−th
microphone becomes

xm(k, n) =

Lh−1∑
l=0

hm(k, l)s(k, n− l) + em(k, n), (2)

where hm(k, l) models the acoustic transfer function between the
speech source and the m-th microphone in the k-th frequency bin
with length Lh. The model in (2) divides the time-domain convo-
lution in (1) into a set of convolution in the time-frequency domain
and has been widely adopted in the dereverberation literature [13].
Given the general assumption of ignoring the noise term, as done
in [13, 14], we can rewrite (2) as

xm(k, n) =

τ−1∑
l=0

hm(k, l)s(k, n− l)︸ ︷︷ ︸
dm(k,n)

+

Lg−1∑
l=τ

hm(k, l)s(k, n− l),︸ ︷︷ ︸
rm(k,n)

where the first term dm(k, n) is the desired speech and the second
term rm(k, n) is the reverberation term. Notice that the term τ is
a delay [6] allows for modeling the direct speech and the early re-
flections which generally do not give issues in terms of recognition
accuracy or speech quality and intelligibility [2]. Borrowing the no-
tation in [14], using M prediction filters of length Lg , the desired
speech signal can be rewritten as

dm(k, n) = xm(k, n)−
M∑
i=1

Lg−1∑
l=0

xi(k, n− τ − l)gm,i(k, l) . (3)

where gm,i(k, l) is the l−th prediction coefficient between the i−th
and the m−th channel. The equivalent model in matrix notation is:

D(k) = X(k)−Xτ (k)G(k), (4)

where

D(k) = [d1(k), · · · ,dM (k)] ∈ CN×M ,

dm(k) = [dm(k, 1), · · · , dm(k,N)]T ∈ CN×1,

X(k) = [x1(k), · · · ,xM (k)] ∈ CN×M ,

xm(k) = [xm(k, 1), · · · , xm(k,N)]T ∈ CN×1,

Xτ (k) = [Xτ,1(k), · · · ,Xτ,M (k)] ∈ CN×MLg ,

and Xτ,m(k) ∈ CN×Lg is the convolution matrix of xm(k, n− τ).
The prediction matrix is

G(k) = [g1(k), · · · ,gM (k)] ∈ CMLg×M , (5)

with gm(k) = [gm,1(k, 0), · · · , gm,1(k, Lg − 1), . . .

gm,M (k, 0), · · · , gm,M (k, Lg − 1)]T ∈ CMLg×1.
(6)

3. MIMO MULTICHANNEL LINEAR PREDICTION

The prediction coefficients matrix G in (4) is then found by solving
the following optimization problem:

Ĝ = argmin
G

‖X−XτG ‖qp,q + α ‖G‖sr,s, (7)

where ‖ · ‖qp,q is defined as the `p,q norm of a matrix V ∈ Cn×m:

‖V‖p,q =

(
n∑
i=1

‖Vi,:‖qp

)1/q

(8)

and ‖Vi,:‖p is the `p norm of the i−th row-vector Vi,:. We have
omitted the frequency index k and we will continue to do so for the
remainder of the paper for clarity and conciseness. The choice of the
norms p, q, r, s, and the regularization termαwill engender different
type of solutions with different meanings. Solving the problem with
α = 0 in an element-wise least-squares sense (Frobenius norm)

Ĝ = argmin
G

‖X−XτG‖22,2 = argmin
G

‖X−XτG‖2F , (9)

is equivalent to solve for each of the M microphones separately:

ĝm = argmin
gm

‖xm −Xτgm‖22 =
(
XH
τ Xτ

)−1

XH
τ xm, (10)

thus Ĝ = [ĝ1, . . . , ĝM ] and d̂m = xm − Xτ ĝm. In order to
obtain a sparse residual (i.e., desired signal D) in the MIMO linear
prediction case, it was proposed to replace the `2,2 norm by solving
the `2,1 norm through the approximation of the `1 norm provided by
the IRLS algorithm [14]. A summary of the algorithm is shown in
Algorithm 1. It is interesting to notice that when q = 0, the WPE
method in [13] with Scaled Identity Matrix Method is equivalent to
the IRLS algorithm [14]. The closed form solution of the weighted
element-wise `2,2 norm problem is

Ĝ =
(
XH
τ WXτ

)−1

XH
τ WX. (11)

It is then clear that both approaches presented in [14] and [13], seek
sparsity in the STFT domain for the estimated desired speech, one
explicitly and one implicitly. Both methods rely on nonconvex opti-
mization methods based on IRLS ( [10] to solve a sparse approxima-
tion problem). By using the `1 norm as a better approximation for
sparsity (the so-called `0 norm) than the reweighted `2 norm [16,17],
we set out to improve the estimation of Ĝ and thus achieving better
dereverberation.

3.1. Regularization and Model Order Selection

The objective of the term α‖G‖sr,s in (7) is twofold. Firstly to act
as a regularization term, given that often very closed spaced micro-
phones compose the array, the matrix XH

τ Xτ might be close to be
singular. Secondly to act as a model order selection penalization
term, considering that, if the order Lg is not chosen appropriately,
the estimation of Ĝ might suffer from ill-conditioning. This sec-
ond scenario is particularly interesting as Lg might be fixed but the
acoustic properties of the space in which the algorithm is deployed
might vary dramatically.

In particular, if we see the sparse approximation problem `0
norm as a minimum description length (MDL) constraint [18], then
solving the `0 norm with the IRLS algorithm, we simply obtain iter-
ations solving

minimize
G

‖ diag(wD)1/2D‖22 + α‖ diag(wG)1/2G‖22, (12)

a Tikhonov regularized version of the problem in Algorithm 1 with
closed form solution

Ĝ =
(
XH
τ diag(wD)Xτ + α diag(wG)

)−1

XH
τ diag(wD)X,

(13)
where wD,n =

(
‖dn‖22 + ε

)q/2−1 and wG,m =
(
‖gm‖22 + ε

)q/2−1.



Algorithm 1 WPE with Scaled Identity Matrix
Inputs: speech segment X, approximation norm 0 ≤ q ≤ 1
Outputs: predictor Ĝi, dereverberated multichannel signal D̂i

i = 0, initial weights w0
m =

(
‖xn‖22 + ε

)q/2−1, ∀n
while halting criterion false do

Wi = diag
(
wi
)

Ĝi = argminG ‖W
1/2
i (X−XτG) ‖22

D̂i+1 = X−XτĜ
i

wi+1 =
(
‖dn‖22 + ε

)q/2−1, ∀n
i← i+ 1

end while

4. CONVEX FORMULATIONS

We may also make convex formulations of (11) and (13), in-
particular we consider problems on the form (q = r = s = 1)

Ĝ = argmin
G

‖X−XτG ‖1p,1 + α‖G‖11,1. (14)

We consider the cases p = 1 and p = 2, where p = 1 is an element-
wise `1 formulation, while p = 2 is a group LASSO formulation
[19]. To solve these problem we use alternating-direction methods
of multipliers (ADMM) [20, 21], first presented in [22, 23].

4.1. Least Absolute Devation (LAD)

For p = 1, (14) becomes the element-wise regularized least-sum-of-
absolute problem,

Ĝ = argmin
G

‖X−XτG ‖11,1 + α‖G‖11,1 . (15)

Similar to the least-squares formulation in (9), this problem is sepa-
rable, and can be solved as

ĝm=argmin
gm

‖xm −Xτgm‖1+α‖gm‖1, m = 1, . . . ,M. (16)

Since ‖x1‖1 + ‖x2‖1 =

∥∥∥∥[x1

x2

]∥∥∥∥
1

, the problem in (16) can be seen

as a non-regularized least-sum-of-absolute problem

ĝm = argmin
gm

∥∥∥∥[xm0
]
−
[
Xτ

αI

]
gm

∥∥∥∥
1

, m = 1, . . . ,M (17)

with new data and coefficient matrices. The ADMM algorithm for
this particular type of formulation is known, see, e.g., [24] or the
overview work [20, 21].

4.2. Group LASSO (GL)

For p = 2, the problem (14) is not separable and the ADMM algo-
rithm is more complicated. The basic algorithm is shown in Algo-
rithm 2. The function St is the proximity operator

St
([

V1

V2

])
=argmin

U1,U2

t‖U1‖1,1 + t‖U2‖2,1 +
1

2

∥∥∥∥[V1 −U1

V2 −U2

]∥∥∥∥2
2,2

.

This subproblem is however separable with the solution

St
([

V1

V2

])
=

[
Et(V1)�V1

Dt(V2)V2

]
, (18)

where Dt(V) = diag([(1− t/‖V1,:‖2)+ · · · (1− t/‖Vn,:‖2)+],
{Et(V)}i,j = (1 − t/|Vi,j |)+, with the operator (a)+ =
max(a, 0), a ∈ R. Note that soft-thresholding is applied on V1 and
block soft-thresholding on V2.

Algorithm 2 ADMM for the (regularized) GL formulation
Inputs: speech segment X, regularization parameter α
Outputs: predictor Ĝi, dereverberated multichannel signal D̂i

i = 0, Z0 = 0, Λ0 = 0
while halting criterion false do

Ĝi = (XH
τ Xτ + αI)−1

[
αI XH

τ

](
Zi +

[
0
X

]
−Λi

)
Ri =

[
αĜi

XτĜ
i −X

]
Zi+1 = St(Ri + Λi)
Λi+1 = Λi + Ri − Zi+1

i← i+ 1
end while

4.3. Resource considerations

The main difference in terms of computation and memory require-
ments, between IRLS-type methods and the convex methods pre-
sented, arises from solving the two systems of equation with coeffi-
cient matrices

XH
τ diag(wi

D)Xτ + diag(wi
G) ∈ CMLg×MLg , (19)

and
XH
τ Xτ + αI ∈ CMLg×MLg , (20)

respectively. In particular, the coefficient matrix in (19) changes for
each i−th IRLS iteration while (20) remains constant in LAD and
GL. Furthermore, the diagonal reweighting will often destroy matrix
structures.

If the signals are windowed using the autocorrelation method
[18], then (20) can be permuted to a block Toeplitz matrix with
M ×M blocks and solved using, e.g., the classical block-Levinson
method [25] in O(M3L2

g) (and can be formed only once in a direct
manner inO(NM2Lg). Differently, to form and solve (19) requires
O(N(MLg)

2 + (MLg)
3) operations using Cholesky factorization.

Thus, while IRLS methods are selected for their simple implemen-
tation, they often have asymptotically higher resource requirements
when compared to the convex formulations with splitting type meth-
ods. Similar considerations are presented in [26, 27] for other signal
processing problems.

5. EXPERIMENTAL ANALYSIS

We evaluated the performance of the methods presented simulat-
ing artificial utterances that mimic real use cases specific for voice
enabled smart speakers. Similarly to the experiments presented in
[28, 29], we use a room configuration generator. Our target hard-
ware is known, in particular, we considered a 6-microphone circular
array of 72 mm diameter. This will be assumed suspended in space
for simplicity in the simulation.

5.1. Scenario Generator

We used COMSOL R©to generate the six room impulse responses
(RIRs) from a omnidirectional point source to each of the micro-
phone populating the array. COMSOL R©models the room acoustic
by solving directly the Helmholtz equation, or the scalar wave equa-
tion, using the finite element method [30]. The size of the room
was set to have a uniform distribution of width, length, and height
between 3 to 8 m, 3 to 10 m, 2 to 4 m, respectively. The distance
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Fig. 1. Results for small room (a) and large room (b) as a function of distance for all the considered methods.

between the center of the array and the point source was chosen be-
tween 1 and 7 m with azimuth, θ, and elevation, φ, randomly se-
lected in the interval [−180, 180] and [45, 135] degrees. Both source
and microphones are assumed to be at least 0.25 m away from the
wall. Focusing only on the dereverberation algorithm, we assume
only diffuse HVAC noise at SNR uniformly distributed between 10
to 30 dB at the center of the array (roughly similar at each micro-
phone). COMSOL R©does not allow to choose a overall T60 for the
room, so we tune the reflection coefficient for each of the surfaces of
the cuboid to obtain a reverberation time for each room included be-
tween 300 and 700 ms with a skewed distribution towards the higher
values. Pieces of furniture were also used and distributed in the room
to make the RIRs more realistic. We generated 1000 rooms with this
method.

5.2. Results

We evaluated the dereverberation performance of the proposed meth-
ods in terms of word error rate (WER) by processing the speech
through an ASR engine. The engine was trained using the Lib-
rispeech 100hrs corpus [31]. The set is composed of 100 hours of
clean speech, 125 male, 125 female speakers) derived from audio-
books data. We trained a ASR Kaldi baseline following the s5 recipe
for Librispeech 100hrs with the same language model. We chose to
train only on clean speech as we focused our analysis on the dere-
verberation performance of the algorithm. This Kaldi model used
composite mel frequency cepstral coefficient (MFCC) features over
which linear discriminant analysis (LDA), maximum likelihood lin-
ear transform (MLLT), and speaker adaption transform (SAT) trans-
formations were applied to generate 40-dimensional features used
during training; the DNN architecture itself consists of 4 p-norm lay-
ers with 3486 outputs corresponding to the context dependent clus-
ters [32].

We compared IRLS, LAD, GL, and their regularized ver-
sions. The dereverberation algorithm was based on an analysis-
modification-synthesis scheme with 50% overlapping Hamming
windows of 32ms length. The order of the predictor was Lg = 10,
the prediction delay τ = 2, and the convolution matrices Xτ,m,
m = 1, . . . ,M were generated using the autocorrelation-type win-
dowing [18]. The halting criterion for the IRLS was the Frobenius
norm of the difference between the solution prediction error at step
i and i + 1 to be lower than 10-3. The IRLS was run with q = 0

in Algorithm 1, making it equivalent to WPE. The regularization
parameter was chosen as α = 0.1, which showed empirically to
provide a good tradeoff between level of regularization and accu-
racy of the solution. The ADMM was run for 100 iterations.

We test using the Librispeech test partition [31]. Each file is
processed with the RIRs and deconvolved in the STFT domain. Each
output channel is run through the ASR engine and the best output is
chosen. We split the results into two main cases: small room and
large room. These were defines as as rooms with volume below and
above 90 m3, respectively. Furthermore, we analyzed only small
rooms with T60 < 400ms and large rooms with T60 ≥ 400ms.
This was done as with randomization of the reflection coefficients
to obtain reasonable T60 values, some of the rooms had unrealistic
acoustic. About 840 out of 1000 were then used for the final analysis,
split equally in the two groups.

The results are shown in Figure 1. Firstly, it can be seen that
both LAD and GL generally perform better than IRLS demonstrating
overall that solving directly the `1 norm with convex tools as solution
to the sparse approximation problem is a good idea. Secondly, the
regularized methods perform much better than their non-regularized
counterparts, meaning that with a slight add in computational cost,
we see improvements both in small and large rooms for all distances
showing less dependence on the choice of Lg . While the proposed
algorithm does not explicitly model the noise, the system is reli-
able also in moderate noise conditions as the one considered. This
means that, while joint denoising and dereverberation approaches
might achieve slight better results, a two step procedure is also a
valuable alternative. Also, using multicondition training of the ASR
engine is generally required for good performance.

6. CONCLUSIONS

We proposed two algorithms, LAD and GL, that solve the sparse
MCLP-based MIMO speech dereverberation problem by applying
the convex `1 norm rather than using nonconvex IRLS-type ap-
proaches. We also introduced the concept of regularization in the
MCLP optimization problem for added robustness. The dereverber-
ation performance showed a clear improvement over state-of-the-art
nonconvex methods for sparse approximation. We also empha-
sized that, while IRLS methods are simpler to implement, they
often require higher computation and memory per iteration than the
proposed splitting type convex method.
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nis d’ordre un, et la résolution, par pénalisation-dualité d’une classe
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