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Abstract
In this paper, we present a practical implementation of the para-
metric multi-channel Wiener filter (PMWF) noise reduction al-
gorithm. In particular, we extend on methods that incorporate
the multi-channel speech presence probability (MC-SPP) in the
PMWF derivation and its output. The use of the MC-SPP brings
several advantages. Firstly, the MC-SPP allows for better esti-
mates of noise and speech statistics, for which we derive a direct
update of the inverse of the noise power spectral density (PSD).
Secondly, the MC-SPP is used to control the trade-off param-
eter in PMWF which, with proper tuning, outperforms the tra-
ditional approach with a fixed trade-off parameter. Thirdly, the
MC-SPP for each frequency-band is used to obtain the MMSE
estimate of the desired speech signal at the output, where we
control the maximum amount of noise reduction based on our
application. Experimental results on a large number of simu-
lated scenarios show significant benefits of employing MC-SPP
in terms of SNR improvements and speech distortion.
Index Terms: Microphone arrays, multi-channel noise reduc-
tion, multi-channel speech presence probability (MC-SPP)

1. Introduction
Multi-channel noise reduction is an integral part of many mod-
ern microphone arrays systems with applications ranging from
communication systems to human-machine interfaces [1]. In
particular, the recent advent of smart loudspeakers like the
Amazon Echo, Google Home, and Sonos One, has pushed the
robustness required in far-field noise reduction, as the user ex-
pects the same level of performance in multiple conditions, re-
gardless of their acoustic environments. Differently from single
channel approaches, the added spatial dimension, inherent to
the array spatial aperture, results in more degrees of freedom
that allows for noise reduction with low or even no speech dis-
tortion [2].

Given the inherent spatial nature of the multi-channel noise
reduction problem, earlier approaches were greatly influenced
by the traditional theory of beamforming that was initially de-
veloped for sonar and radar applications using antenna arrays
[3]. Well-known multi-channel noise reduction techniques in-
clude the Frost beamformer [4], the minimum variance distor-
tionless response (MVDR) beamformer, also known as Capon
beamformer [5], the linearly constrained minimum variance
(LCMV) beamformers [6, 7], and the generalized sidelobe can-
celer (GSC) [8]. In all these methods, the general idea is to steer
a beam toward the desired speaker while reducing the back-
ground noise coming from other directions.

The multi-channel Wiener filter (MWF) is another well-
known multi-channel noise reduction technique, providing a
minimum mean-squared error (MMSE) estimate of the speech
component in one of the microphone signals [2]. The litera-
ture offers several extensions to the traditional MWF. In partic-

ular, in [9], the MVDR, the GSC, and the parametric multi-
channel Wiener filter (PMWF) were formulated into a com-
mon frequency-domain framework where a trade-off between
noise reduction and speech distortion can be achieved. Further-
more, in contrast to traditional beamforming research, in [9]
there are no assumptions on the geometry of the system. In
this case, MWF and PMWF can also be formulated as a dis-
tributed noise reduction algorithm where the microphone arrays
are part of a wireless acoustic sensor network system [10, 11].
This makes the MWF particularly relevant in practical imple-
mentation of speech enhancement algorithms in multi-device
applications where the relative geometry of multiple sets of mi-
crophones is unknown, like multi-device smart loudspeaker sys-
tems (e.g., Sonos home sound system).

The MWF and its extensions, require an accurate estimate
of the noise PSD. This, in turn, requires a robust estimation of
when speech is present [12]. This can be achieved using the
speech presence probability (SPP) that has been known to of-
fer better performance when incorporated in the noise spectrum
estimation [13, 14]. In [15], a new expression for the multi-
channel speech presence probability (MC-SPP) was established
for a microphone array with arbitrary geometry under the as-
sumption of Gaussian statistical model for speech and noise.
The MC-SPP has then been used to extend the single-channel
noise PSD estimation to the multi-channel case [16, 17].

In this paper, we provide implementation details for all
these different steps of the PMWF derived using the MC-SPP.
The MC-SPP helps in an efficient estimation of the inverse of
the noise PSD matrix, fundamental in any MWF implementa-
tion. Similarly to [12], we show also how the MC-SPP can help
in controlling the tradeoff parameter between speech distortion
and noise reduction and the overall speech output.

This paper is organized as follows. We define the multi-
channel noise reduction problem in Section 2. In Section 3,
we review the PMWF formulation and its solution. In Section
4, we overview the approach to estimate the PSD matrices. In
Section 5, we summarize the implementation aspects of our pro-
posed algorithm. Experimental evaluation and conclusions are
discussed in Section 6 and 7, respectively.

2. Problem Definition
In the following, we consider the signal model in STFT do-
main where each microphone input of an N -element array in-
cludes an additive mixture of reverberant speech component (or
desired signal), and noise where the noise can represent mul-
tiple competing point sources or a spatially incoherent noise.
The received signal at the n-th microphone can be modeled as
Yn(`, k) = Xn(`, k) + Vn(`, k), n = 1, 2, . . . , N , where
Xn(`, k) and Vn(`, k) represent the STFT complex coefficients
of the desired speech signal and the noise component, respec-
tively. In addition, ` and k ∈ {0, . . . ,K − 1} denote the time-



frame and frequency bin indices, respectively. The observed
signal at the microphone array can be written in vector format
by defining y(`, k) , [Y1(`, k), . . . , YN (`, k)]T , and its corre-
sponding power spectrum density (PSD) matrix is defined as

Φyy(`, k) , E[y(`, k)yH(`, k)]. (1)

Similarly, we define vectors x(`, k) and v(`, k) and PSD matri-
ces Φxx(`, k) and Φvv(`, k). Assuming that the desired speech
and noise signals are zero-mean and uncorrelated, the speech
PSD matrix can be expressed as

Φxx(`, k) = Φyy(`, k)−Φvv(`, k). (2)

3. Parametric Multi-Channel Wiener Filter
The multi-channel Wiener filter is a linear filter that attempts
to enhance the output SNR by reducing noise, utilizing the
microphone array’s input observation. The objective is to re-
duce the noise and recover one of the signal components in
some optimal way (by solving a constraint optimization) where
a linear filter hi(`, k) is applied to the observation vector as
X̂i(`, k) = hHi (`, k)y(`, k). The constraint optimization
problem is formed to maximize the local noise reduction fac-
tor (ξnr(hi(`, k))) while limiting the maximum allowable lo-
cal signal distortion index (νsd(hi(`, k))) below a frequency-
dependent threshold. The constraint optimization problem in
order to find the linear filters is given by

arg max
hi(`,k)

ξnr(hi(`, k))

subject to νsd(hi(`, k)) ≤ σ2(`, k) (3)

where ui is the i-th standard basis vector and

ξnr(hi(`, k)) =
Φvivi(`, k)

hHi (`, k)Φvv(`, k)hi(`, k)
, (4)

νsd(hi(`, k)) =
[ui − hi(`, k)]HΦxx(`, k)[ui − hi(`, k)]

Φxixi(`, k)
.

(5)
The closed form solution is obtained by first forming the La-
grangian associated with the optimization problem and then set-
ting its derivative with respect to hHi (`, k) to zero. The STFT
domain PMWF is given by [9]

hi(`, k) =
Φ−1
vv (`, k)Φyy(`, k)− IN

β(`, k) + tr{Φ−1
vv (`, k)Φyy(`, k)} −N

ui , (6)

where tr{·} denotes the trace operator and β(`, k) (positive
valued and the inverse of the Lagrange multiplier) is a time-
frequency dependent factor that allows for tuning the signal dis-
tortion and noise reduction at the output of hi(`, k). In the fol-
lowing, we propose a method to use the multi-channel speech
presence probability to control the trade-off parameter β. One
important advantage of the final expression for PMWF is that it
only depends on the input and noise statistics through their PSD
matrices.

4. Estimation of PSD Matrices
PMWF is uniquely based on the second-order statistics, and
in the estimation of the speech+noise and the noise-only PSD
matrices. Typically, an averaging time window of 2-3 seconds
is used to achieve a reliable estimate. This suggests that the

noise reduction performance of the PMWF depends on the long-
term average of the spectral and the spatial characteristics of the
speech and the noise sources. In practice, this means that the
PMWF can only work well if the long-term spectral and/or spa-
tial characteristics of the speech and the noise are slowly time-
varying. As it is evident from the final expression of PMWF
in (6), the key to obtain the linear filter is to estimate the PSD
matrices Φyy(`, k) and Φvv(`, k). The accuracy of these esti-
mates play a crucial role in the quality of the filter and its final
performance. In this section, we summarize the ideas utilized
to estimate these PSDs.

The estimation of Φyy(`, k) is relatively straightforward.
We use the typical first order smoothing to approximate the
mathematical expectation and estimate the input vector’s PSD.
The only parameter of importance is the smoothing coefficient
(αy) which needs to be tuned properly. The Following expres-
sion is used to update input PSD matrix

Φ̂yy(`, k) = αyΦ̂yy(`−1, k)+(1−αy)y(`, k)yH(`, k). (7)

For noise PSD matrix estimation, we need to take into ac-
count the speech presence uncertainty. The standard procedure
to estimate the speech presence probability in a given time-
frame and frequency-bin requires distinguishing between two
hypotheses

H0(`, k) : y(`, k) = v(`, k) speech is absent,
H1(`, k) : y(`, k) = x(`, k) + v(`, k) speech is present.

Assuming that the speech and noise signals are modelled as
complex multivariate Gaussian random variables, the MC-SPP
is estimated as follows [15]

p(`, k) , Pr[H1(`, k)|y(`, k)]

=

{
1 +

q(`, k)

1− q(`, k)
[1 + ξ(`, k)]exp

[
− γ(`, k)

1 + ξ(`, k)

]}−1

,

(8)

where q(`, k) , Pr[H0(`, k)] is the a priori speech absence
probability which can be estimated recursively as in [18, 17]
(we have used fixed q(`, k) , q0 in our implementation), and
we have the following definitions

γ(`, k) , yH(`, k)Φ−1
vv (`, k)Φyy(`, k)Φ−1

vv (`, k)y(`, k)

− yH(`, k)Φ−1
vv (`, k)y(`, k)

ξ(`, k) , tr{Φ−1
vv (`, k)Φyy(`, k)} −N, (9)

where we have utilized (2) to replace Φxx(`, k), and ξ(`, k)
denotes the multi-channel a priori signal-to-noise ratio (SNR)
which is also the theoretical output SNR of the PMWF which
also appears in the denominator of (6).

Using the speech presence probability, a MMSE estimate
for the noise PSD matrix can be written as

E[vvH |y] = Pr[H0|y]E[vvH |y, H0]

+ Pr[H0|y]E[vvH |y, H1], (10)

where we have omitted ` and k indices for simplicity of nota-
tion. To approximate the expectations in (10), we follow the
same approach we took to estimate Φyy(`, k). We use recur-
sive averaging using a smoothing parameter αv when we are
under hypothesisH0 by including the new observation vector y
in the averaging while we do not change the noise PSD matrix



estimate when we are under hypothesisH1. This can be viewed
as a generalization of the MCRA approach [18] for noise track-
ing to multi-channel case. Employing this technique, the noise
PSD matrix can be estimated as

Φ̂vv(`, k) = p(`, k)Φ̂vv(`− 1, k) + (1− p(`, k))×(
αvΦ̂vv(`− 1, k) + (1− αv)y(`, k)yH(`, k)

)
.

(11)

The noise PSD matrix estimate can be further simplified as

Φ̂vv(`, k) = α̃v(`, k)Φ̂vv(`− 1, k)

+ (1− α̃v(`, k))y(`, k)yH(`, k) , (12)

where the effective time-frequency dependent smoothing coef-
ficient is defined as α̃v(`, k) , αv + (1− αv)p(`, k).

5. Implementation Aspects
In this section, we summarize the steps used to derive the
PMWF and its output and the steps that would improve its ro-
bustness and performance in practical applications.
MC-SPP Smoothing: In order to improve the MC-SPP estima-
tion, we propose to use a recursively smoothed MC-SPP with
smoothing coefficient 0 ≤ αp < 1 as follows

p(`, k) = αpp(`− 1, k) + (1− αp)p(`, k). (13)

In addition, in order to avoid stagnation, we introduce a max-
imum SPP value and set p(`, k) = min{p(`, k), pmax}. Simi-
larly, we can introduce a minimum SPP and modify the SPP as
p(`, k) = max{p(`, k), pmin}.
Derivation of the Inverse of the Noise PSD Matrix: To obtain
PMWF at time-frame ` and frequency k, we need to compute
Φ̂

−1

vv (`, k), where the calculation of the noise PSD matrix re-
quires the MC-SPP estimate p(`, k). The value of p(`, k) is
calculated using γ(`, k) and ξ(`, k) which are defined in (9).
However, to compute these terms, we need the estimate of the
inverse of the noise PSD matrix Φ̂

−1

vv (`, k) which is not avail-
able yet. As a compromise, we propose to use Φ̂

−1

vv (` − 1, k)
to estimate p(`, k) which is then used to derive α̃v(`, k) and
p(`, k). It is possible to perform this procedure in a few iterative
steps to achieve a better estimation at time frame `. Basically,
update MC-SPP after Φ̂

−1

vv (`, k) is estimated and proceed again
to estimate p(`, k).

Note that, by definition, we should have γ(`, k) ≥ 0 and
ξ(`, k) ≥ 0. However, in practice, due to estimation errors
and overestimation of the noise PSD matrix, we might get neg-
ative values for these terms, especially before the PSD matrices
converge. To improve the algorithm’s performance and avoid
numerical issues, whenever γ(`, k) < 0 or ξ(`, k) < 0, we
propose to set Φ̂

−1

vv (`, k) = Φ̂
−1

yy (`, k).
Typically, calculation of matrix inverse is computation-

ally very prohibitive. We note that the update expression for
Φ̂vv(`, k) in (12) includes a rank-1 correction in each iteration.
As a result, we propose to use Woodbury matrix identity (or
Sherman-Morrison formula) in (12) where we don’t need to cal-
culate Φ̂vv(`, k) directly

Φ̂
−1

vv (`, k) =
1

α̃v(`, k)

(
Φ̂

−1

vv (`− 1, k)− ỹ(`, k)ỹH(`, k)

g(`, k)

)
,

(14)

where ỹ(`, k) , Φ̂
−1

vv (`− 1, k)y(`, k), and

g(`, k) ,
α̃v(`, k)

1− α̃v(`, k)
+ yH(`, k)ỹ(`, k). (15)

It is evident that the above approach directly updates the in-
verse of the noise PSD matrix which reduces the computational
complexity of the algorithm in practical implementations. Em-
ploying this approach requires a proper initialization step which
is discussed in more details in the following.
MC-SPP Controlled PMWF: The a posteriori SPP has been
used to control the trade-off between noise reduction and speech
distortion. In [12], the SPP was used to control the trade-off pa-
rameter of a PMWF. The SPP-controlled PMWF outperforms
the traditional MWF that uses a fixed trade-off parameter in
terms of noise reduction and speech distortion. In this contri-
bution, we propose to control the trade-off parameter β(`, k)
based on the estimated MC-SPP using the following expression

β(`, k) =
β0

αβ + (1− αβ)β0 p(`, k)
. (16)

The idea is to use small trade-off values when MC-SPP is high
to reduce speech distortion, and use larger trade-off values when
MC-SPP is low to increase the noise reduction. The parameter
αβ provides a compromise between a fixed trade-off parameter
β0 and one purely based on MC-SPP.
MMSE Estimate of the Output: Once the linear filter
hHi (`, k) is derived, the MMSE estimate of the desired speech
signal can be obtained according to

X̂i(`, k) = p(`, k)hHi (`, k)y(`, k)+(1−p(`, k))GminYi(`, k),
(17)

where p(`, k) is defined in (13), and the gain factor Gmin deter-
mines the maximum amount of noise suppression when speech
is not present. This method mitigates the speech distortion
caused due to the estimation error of MC-SPP. The parameter
Gmin can be tuned to optimize the performance metric of interest
(e.g., word error rate in automatic speech recognition systems)
in the speech acquisition system. Note that this derivation does
not assume a specific assignment of the reference microphone
and potentially i ∈ {1, . . . , N}.
Initialization of the PSD Matrices: The input and noise PSD
matrices need to be initialized at time-frame 0 in the recur-
sive averaging implementation. A standard technique is to ini-
tialize them with diagonal matrices as Φ̂yy(0, k) = δIN and
Φ̂

−1

vv (0, k) = δ−1IN for k ∈ {0, . . . ,K − 1} where δ > 0 is
a very small positive number. However, the convergence speed
of the algorithm can be improved by introducing an initializa-
tion period where we assume the input signal consists of noise
only. Moreover, this approach provides a consistent behavior in
noise reduction and noise PSD matrix tracking independent of
its spatial and spectral structure. Let us assume that the first L
time frames are used for the initialization period where L ≥ N .
Then, the input signal PSD matrix at time-frame L can be ap-
proximated as

Φ̂yy(L, k) = δIN +
1

L

L∑
`=1

y(`, k)yH(`, k). (18)

In order to derive the inverse of the noise PSD matrix at time-
frame L, we initialize Φ̂

−1

vv (0, k) = δ−1IN and then use the
Woodbury matrix identity during the initialization period as

Φ̂
−1

vv (`, k) = Φ̂
−1

vv (`− 1, k)− ỹ(`, k)ỹH(`, k)

L+ yH(`, k)ỹ(`, k)
, (19)



Table 1: Parameters used to implement the proposed algorithm

N = 4 L = 16
αv = 0.95 αy = 0.95 αp = 0.1 q0 = 0.5
pmax = 0.99 pmin = 0.01 Gmin = 0.1 δ = 10−5

where ` = 1, . . . , L and ỹ(`, k) , Φ̂
−1

vv (`− 1, k)y(`, k). Dur-
ing the initialization period, the MC-SPP is set to 0 and the
output is generated using (17). In our experiments, a relatively
short initialization period of 250 ms (L = 16) was used which
resulted in fast convergence of the noise PSD matrix.

6. Numerical Experiments
In this section, we present the performance evaluation of the
proposed algorithm in terms of speech enhancement and dis-
tortion at the output of the PMWF. In our simulation setup,
the sampling frequency was 16 kHz, and the frame length of
M = 512 samples was used in the STFT implementation with
50% overlap with Hann window. The simulation was performed
in a room with the dimension of [5 5 3] m. We consider a circu-
lar array of N = 4 microphones with the diameter of d = 7.25
cm where the microphone array is located at [2.5 1 1] m in the
room. Table 1 summarizes the parameters used in the imple-
mentation of the proposed algorithm. We focus on reverber-
ant environments where the reverberation time T60 = 300 ms
has been used. The i-th microphone signal (yi(t)) is generated
by convolving the target source signal (clean speech utterance)
with the corresponding room impulse response (RIR) (which re-
sults in xi(t)) and then corrupted by noise signal (vi(t)) based
on the SIR and SNR values: yi(t) = xi(t) + vi(t). The
RIRs are generated using the image source model [19]. The
noise signal is decomposed as vi(t) = wi(t) + ni(t) where
wi(t) denotes the point-source noise or the interference, and
ni(t) denotes the spatially and temporally white Gaussian noise
(AWGN). The noise levels are controlled by SNR and SIR
values which are defined as SIR = E{x21(t)}/E{w2

1(t)} and
SNR = E{x21(t)}/E{n2

1(t)} where microphone 1 is used as
the reference. The target speech signals are taken from the
TIMIT database [20] and include 80 speakers which consists of
40 males and 40 females where 1 utterance for each speaker is
selected. The speaker is located at the distance of 3 m and angle
of 120 degrees with respect to the center of the microphone ar-
ray. Two different types of point-source noise (interference) are
studied in this work: babble and pink noise taken from the Noi-
sex database [21]. The point-noise source is located at the dis-
tance of 2.5 m and angle of 45 degrees with respect to the center
of the microphone array. In our experiment, we use SIR = SNR
where the overall input SINR is changed from −5 to 15 dB.

In the following, we consider four performance metrics
to demonstrate the performance of the proposed method. In
this setup, for computation of the performance measures,
we can calculate the filtered clean speech signal (xfiltered(t))
by applying the derived filters to the input clean speech.
Then, we can calculate the output SINR in time-domain as
E{x2filtered(t)}/E{v2filtered(t)} where vfiltered(t) is the residual
noise and is expressed as vfiltered(t) = yfiltered(t) − xfiltered(t).
Using the value of output SINR and input SINR, we can de-
fine SINR improvement as the first performance metric. The
noise reduction factor is defined as E{v21(t)}/E{v2filtered(t)}
and the speech distortion factor is defined as E{(x1(t) −
xfiltered(t))

2}/E{x21(t)}. Moreover, we report the improvement
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Figure 1: Performance metrics for babble noise (left) and pink
noise (right)

in segmental SNR (SegSNR) defined in [22] as an objective
speech quality measure. These metrics are then averaged over
all the utterances in our dataset. In the following, we compare
the performance of the standard MVDR (β0 = 0, αβ = 1),
MCWF (β0 = 1, αβ = 1), MC-SPP Controlled PMWF
(β0 = 1, αβ = 0.75), and the proposed MMSE estimate in
(17) with β0 = 1, αβ = 0.75.

The performance metrics of interests are illustrated in Fig. 1
as a function of input SINR. The results show that MCWF con-
sistently outperforms MVDR in all performance metrics except
for the speech distortion factor (as expected). PMWF outper-
forms MCWF in terms of ∆SINR, ∆SegSNR, and noise reduc-
tion while the speech distortion factor remains almost the same.
For both noise types, the improvements of PMWF over MCWF
get smaller as input SINR increases. PMWF with MMSE es-
timate in (17) outperforms PMWF (and all other methods) in
terms of ∆SINR, ∆SegSNR, and noise reduction. The im-
provements are more noticeable in the pink noise scenario. In
this approach, we observe slightly higher speech distortion,
however, the increase is relatively small. Overall, the presented
results suggest that using MC-SPP can improve the noise re-
duction capability of the filter with controlled increase in the
speech distortion where we can tune the parameters to the de-
sirable levels of the performance.

7. Conclusion
A parametric multi-channel Wiener filter (PMWF) implementa-
tion was proposed that utilizes an estimate of the multi-channel
speech presence probability (MC-SPP). We showed how the
MC-SPP affects different aspects of a traditional PMWF formu-
lation, i.e., the estimation of the noise PSD matrix, the control of
the trade-off between noise reduction and speech distortion, and
the estimate of desired speech signal at the output of the PMWF.
In the performance evaluations, we demonstrated that the pro-
posed method outperforms traditional beamforming techniques
in terms of SINR improvement and speech distortion factor.



8. References
[1] M. R. Bai, J.-G. Ih, and J. Benesty, Acoustic array systems: the-

ory, implementation, and application. John Wiley & Sons, 2013.

[2] J. Benesty, J. Chen, and Y. Huang, Microphone array signal pro-
cessing. Springer Science & Business Media, 2008.

[3] B. D. V. Veen and K. M. Buckley, “Beamforming: a versatile ap-
proach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2,
pp. 4–24, 1988.

[4] O. L. Frost, “An algorithm for linearly constrained adaptive array
processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935,
1972.

[5] J. Capon, “High-resolution frequency-wavenumber spectrum
analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418,
1969.

[6] M. Er and A. Cantoni, “Derivative constraints for broad-band
element space antenna array processors,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 31, no. 6, pp.
1378–1393, 1983.

[7] S. Darlington, “Linear least-squares smoothing and prediction,
with applications,” The Bell System Technical Journal, vol. 37,
no. 5, pp. 1221–1294, 1958.

[8] L. Griffiths and C. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Transactions on Antennas
and Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[9] M. Souden, J. Benesty, and S. Affes, “On optimal frequency-
domain multichannel linear filtering for noise reduction,” IEEE
Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 2, pp. 260–276, 2010.

[10] A. Bertrand, J. Callebaut, and M. Moonen, “Adaptive distributed
noise reduction for speech enhancement in wireless acoustic sen-
sor networks,” in Proc. of the International Workshop on Acoustic
Echo and Noise Control (IWAENC), 2010.

[11] A. Bertrand, “Applications and trends in wireless acoustic sen-
sor networks: A signal processing perspective,” in 18th IEEE
Symposium on Communications and Vehicular Technology in the
Benelux, 2011.

[12] K. Ngo, A. Spriet, M. Moonen, J. Wouters, and S. H. Jensen,
“Incorporating the conditional speech presence probability in
multi-channel wiener filter based noise reduction in hearing aids,”
EURASIP Journal on Advances in Signal Processing, 2009.

[13] R. McAulay and M. Malpass, “Speech enhancement using a soft-
decision noise suppression filter,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 28, no. 2, pp. 137–145,
1980.
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