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ABSTRACT

In this paper, we present an algorithm for multi-channel acous-
tic echo cancellation for a high-fidelity audio reproduction system
equipped with a microphone array for voice control. Since a key
requirement for this type of systems is leaving the reference sig-
nals that drive the multiple loudspeakers unaltered, we propose an
adaptive decorrelation procedure in the time domain before feeding
these signals to the echo cancellers. This helps mitigate the so-called
non-uniqueness problem arising from their high correlation. This
approach offers several advantages: it is extendable to a varying
number of channels, requires low computational complexity, and
preserves the original reference content. The echo cancellation ap-
proach applied to the decorrelated reference signals is then based on
STFT-domain robust adaptive methods that do not require double-
talk detection. The combination of these two techniques makes our
approach particularly desirable for multi-channel echo cancellation
problems with very low signal-to-echo ratio.

Index Terms— Multi-channel Acoustic Echo Cancellation
(MCAEC), decorrelation, short-time Fourier transform (STFT)

1. INTRODUCTION

An acoustic echo cancellation (AEC) system is generally required to
perform voice control on music playback devices, i.e., smart speak-
ers, where the coupling of closely spaced loudspeakers and micro-
phones can create very challenging signal-to-echo ratios [1–4].

In the case where a multi-channel speaker setup is deployed,
either from multiple spatially distributed loudspeakers (e.g., a 5.1
surround system) or one device equipped with a number of loud-
speakers (e.g., a soundbar), the loudspeaker-driving signals (i.e., the
reference signals) are typically highly correlated. For P channels,
implementing P independent adaptive filters in parallel, based on
single-channel AEC, suffers from the so called non-uniqueness prob-
lem [5]. While stereo AEC has already been discussed extensively
(see, e.g., [6] and references therein), contributions on multi-channel
AEC (MCAEC) solutions have been less common in the literature,
and mostly targeted towards hands-free voice communication [7–9],
with only a handful of documented industrial-strength solutions, no-
tably, the MCAEC for the Microsoft Kinect for Xbox [10].

There are two type of solutions to cope with the non-uniqueness
problem in MCAEC. The first type, adds distortions to the loud-
speaker signals to decorrelate the channels [5, 11–13]. While more
recent solutions have applied perceptually motivated criteria in or-
der to reduce audible distortions, e.g., [9, 14], the results are still
considered unacceptable for the type of high-fidelity (Hi-Fi) loud-
speaker systems we are considering. Furthermore, they might also
interfere with the sound beamforming operations often present in
this type of system [15], often sensitive to slight changes in the ref-
erence path [16]. A second type of solution for MCAEC is more

suited for our application scenario and is based on applying decorre-
lation filters to the loudspeaker signals in order to make the conver-
gence faster. The idea is to adjust the adaptive filters by decorrelating
the reference signals [8,17,18], making these algorithms resilient to
convergence issue and the non-uniqueness problem. However, these
methods require very high computational and memory resources.

In the single channel AEC case, frequency-domain adaptive fil-
tering (FDAF) [19] was proposed to reduce computational com-
plexity and improve the convergence rate of traditional time-domain
LMS algorithms. The multi-delay filter (MDF) [20] was then pro-
posed to reduce the processing delay by segmenting the FDAF into
smaller blocks. An interesting incarnation of MDF filtering is to
perform system identification directly in the (aliased) STFT domain
[21, 22]. This approach requires only one discrete Fourier transform
(DFT), and one inverse DFT for the analysis and the synthesis, re-
spectively, of each signal making particularly suited for multistage
speech enhancement, usually done in the STFT domain [23].

The use of MCAEC to remove the music feedback at the micro-
phones raises the problem of freezing the adaptive filters when near-
end speech (i.e., the voice command) is present to avoid their diver-
gence. A double-talk detection (DTD) system is generally employed
to this purpose [24]. However, the variability of the output sound
pressure level for music, makes traditional DTD methods based on
correlative measures particularly tricky to tune and implement [24].
Robust adaptation algorithms are better suited for this type of prob-
lem [25–27]. A robust AEC (RAEC) allows for continuous and sta-
ble adaptation of the cancellation filters without applying DTD. The
RAEC uses an error recovery nonlinearity (ERN) that enhances the
filter estimation error prior to the adaptation.

In this paper, we propose a novel algorithm for MCAEC that ap-
plies decorrelation of the reference channels adaptively in the time-
domain. The AEC operating on the decorrelated channels is applied
directly in the STFT domain, similarly to [21], We incorporate ideas
from the robust AEC algorithm to allow for robust update of the
adaptive filters when near-end speech is present, similarly to [28].
The combination of these methods offers several advantages for the
MCAEC problem in smart speakers: works at very low signal-to-
music ratios, accommodates a variable number of reference chan-
nels, and attempts to limit distortion on the voice command.

This paper is organized as follows. The STFT-domain MCAEC
with adaptive filters is reviewed in Section 2. In Section 3, we
present our proposed solution to adaptively decorrelate the reference
channels. The STFT-domain single-channel RAEC is then discussed
in Section 4. Finally, experimental evaluation and the conclusions
are discussed in Section 5 and 6, respectively.

Notation: The transpose, and conjugate transpose of a matrix
X are denoted by XT , and XH , respectively. IN is the identity
matrix of size N . The operators E{·}, ⊗, ◦ denote expectation,
Kronecker product, Hadamard (element-wise) product, respectively.
The operator diag(·) converts a vector into a diagonal matrix.



2. PROBLEM DEFINITION

We consider a P -channel acoustic echo canceller operating in the
STFT domain [21]. Let y[n] be the near-end microphone signal
expressed as y[n] = d[n] + v[n], which consists of the near-end
speech and/or noise v[n] mixed with the acoustic echo d[n] =∑P
p=1 hp[n] ∗ xp[n], where hp[n] is the impulse response of the

system for channel p, and xp[n] is the far-end reference signal of
channel p. Let xtp[`] = [xp[`R], . . . , xp[`R +N − 1]]T be the `-th
frame of the p-th reference signal vector in time-domain where N is
the length of STFT and R is its hop-size. The STFT of the reference
signals is obtained by applying DFT as xp[`] = FWAxtp[`] where
F is theN×N DFT matrix and WA is a diagonal matrix with anal-
ysis window vector on its main diagonal. In the STFT domain, the
acoustic echo signal is represented as [22]

d[`] =

P∑
p=1

M−1∑
i=0

Hi,p[`] xp[`− i] , (1)

where d[`] = [D0[`], . . . , DN−1[`]]
T is the DFT of the echo signal

in frame `, andM is the filter length in the multi-delay STFT domain
adaptive filter implementation [20]. The N × N matrix Hi,p de-
notes the i-th acoustic impulse response matrix for channel p. In the
special case that the impulse response matrices are all diagonal, (1)
reduces to the multiplicative transfer function approximation [29].

The goal of a robust MCAEC algorithm is to estimate the chan-
nel matrices Hi,p. The estimated echo is expressed as d̂[`] =∑P
p=1

∑M−1
i=0 Ĥi,p[`−1]xp[`−i] where Ĥi,p denotes the estimated

adaptive filter. The error signal vector in the STFT domain is defined
as e[`] = y[`] − d̂[`] which is decomposed as e[`] = v[`] + b[`],
where v[`] and b[`] , d[`] − d̂[`] are the noise vector and the
noise-free error signal vector, respectively. In the presence of near-
end speech/noise, the error signal vector e[`] deviates from the true,
noise-free, residual echo signal vector b[`], we will show how we
deal with this issue in Section 4.

3. DECORRELATION OF LOUDSPEAKERS SIGNALS

The main idea for the decorrelation of the reference channels is
based on the following Lemma.

Lemma 1 Assume that the reference channels are stationary
discrete-time random processes. Applying an orthogonalization
transformation to the reference channels in the time-domain can be
utilized to transform the problem into an equivalent set of indepen-
dent and parallel adaptive filters in the frequency-domain.

Proof Define the vector xt[n] , [x1[n], . . . , xP [n]]
T ∈ RP

which contains the time-domain samples of the P random pro-
cesses corresponding to P reference channels at time n. We can de-
fine the cross-correlation matrix as Rxx , E{xt[n]xTt [n]}, which
is time-invariant, and Rxx = UΣUT as its singular-value de-
composition (SVD). Assume that rank(Rxx) = K, and Σ =
diag(σ1, . . . , σK , 0, . . . , 0) where σ1 ≥ . . . ≥ σK . Define the
transformation matrix U[K] comprising the first K columns of U.
Following the notation introduced in Section 2, in frame `, we de-
fine the N × P time-domain reference signal matrix as Xt[`] ,
[xt1[`], . . . ,x

t
P [`]] and its corresponding STFT domain signal ma-

trix is defined as X[`] , [x1[`], . . . ,xP [`]] = FWAXt[`]. Ap-
plying the transformation matrix U in time-domain is equivalent to
a matrix multiplication X

t
[`] = Xt[`]U, which leads to X[`] ,

FWAX
t
[`] = FWAXt[`]U = X[`]U in the STFT domain. As-

suming that N is larger than the length of the acoustic impulse re-
sponse of interest, we can just approximate the impulse response ma-
trices by diagonal matrices. In this case, the NP × 1 multi-channel
adaptive filter vector can be defined as h[`] , [hT1 [`], . . . ,h

T
P [`]]

T

where individual channels are concatenated in a vector. Then,
the echo signal can be expressed as d[`] = Xdiag[`]h[`] where
Xdiag[`] , [diag(x1[`]), . . . , diag(xP [`])] is a N ×NP matrix. Us-
ing X[`] = X[`]UT , we can write Xdiag[`] = Xdiag[`](U

T ⊗ IN ).
Using this expression, the echo signal can be equivalently written as

d[`] = Xdiag[`]h[`] = Xdiag[`](U
T ⊗ IN )h[`]. (2)

This leads to the definition of the equivalent multi-channel adaptive
filter vector as h[`] , (UT ⊗ IN )h[`]. This implies that applying
a unitary transformation to the reference signals corresponds to a
set of new acoustic impulse response matrices which are a linear
combination of the “true” impulse responses. The frequency-domain
normal equations to estimate h[`] can be formed as

E
{

X
H
diag[`]Xdiag[`]

}
h[`] = E

{
X
H
diag[`]d[`]

}
. (3)

Leveraging the rank of Rxx, the new normal equations can be split
into independent and parallel systems of equations. First, we have
the following simplification

E
{

X
H
diag[`]Xdiag[`]

}
= (UT ⊗ IN )E

{
XH

diag[`]Xdiag[`]
}
(U⊗ IN )

= (UT ⊗ IN )(Rxx ⊗ (WH
AWA))(U⊗ IN )

= UTRxxU⊗ (WH
AWA) = Σ⊗ (WH

AWA). (4)

Using the fact that rank(Rxx) = K in (4), reduces the normal equa-
tions into K parallel and independent systems as follows

σp(W
H
AWA)hp[`] = E

{
diag(xHp [`])d[`]

}
, p = 1, . . . ,K.

These individual systems do not suffer from the non-uniqueness
problem. The corresponding echo signal using this simplified model
is expressed as d[`] = Xdiag,[K][`]h[K][`] where Xdiag,[K][`] ,

[diag(x1[`]), . . . , diag(xK [`])] and h[K][`] , [h
T
1 [`], . . . ,h

T
K [`]]T .

Given that rank(Rxx) = K, it is straightforward to show that
E{‖d[`]−d[`]‖22} = 0, which implies that the modeling MSE using
the proposed K independent systems is zero.

We have made two key assumptions to establish the above result.
First, we assumed that the reference channels are stationary random
processes and the corresponding covariance matrix is time-invariant.
Second, the length of the window is assumed to be large enough so
that the impulse response matrices can be approximated by diago-
nal matrices. While, in practice, these assumptions do not hold, we
can use Lemma 1 as a guideline to design a practical algorithm for
adaptive decorrelation of the reference channels. In particular, the
reference channels statistics are slowly time-varying. The statistics
can change based on the loudspeakers input signals characteristics
(audio source type, and genre) and the content dependent sound spa-
tialization. A practical algorithm to find K and U[K] online is pro-
posed and summarized in the following.

1. Initialization: Use the first L frames to estimate the sample co-
variance matrix as R̂xx[L] = 1

LR

∑LR−1
n=0 xt[n]x

T
t [n]. Then,

perform SVD to obtain R̂xx[L] = ULΣLUT
L . The value of K

is obtained as the number of singular values that satisfy σi ≥ δσ1

for some small value δ. U[K] is defined as the first K columns



of UL. Also define R̃xx , R̂xx[L] as the reference (current
estimate) to track the time-variation.

2. At frames ` > L, using a smoothing coefficient αR, update

R̂xx[`] = αRR̂xx[`− 1] +
1− αR
R

`R+R−1∑
n=`R

xt[n]x
T
t [n].

3. At frame ` > L, calculate the matrix cosine similarity (MCS)
metric as a measure of distance between two covariance matrices

η[`] =
|tr{R̃H

xxR̂xx[`]}|√
tr{R̃H

xxR̃xx}tr{R̂H
xx[`]R̂xx[`]}

.

4. At frame ` > L, if η[`] ≤ ηth, where ηth is a defined tolerance
threshold, perform SVD to obtain R̂xx[`] = U`Σ`U

T
` and up-

date R̃xx ← R̂xx[`]. Update the value of K and U[K] similar to
Step 1. In this step, re-initialize the state variables in the MCAEC
algorithm since the transformation matrix has been updated.

5. Obtain the transformed channels: X
t
[K][`] = Xt[`]U[K].

In the proposed method, we only need to estimate and track a
P ×P covariance matrix and calculate its SVD when the MCS met-
ric is below a pre-defined threshold. This guarantees very low com-
putational complexity and memory requirements. Other sub-space
tracking techniques might be used, or other metrics instead of MCS
can be used to track the time-variation. By exploiting this method of
dimensionality reduction, only K adaptive filters are needed which
reduces the computational complexity of the algorithm in a practical
and inexpensive embedded implementation when P is large.

4. ROBUST ADAPTIVE SINGLE-CHANNEL AEC

In this section, we discuss the main aspects of the robust AEC sys-
tem where in the multi-channel implementation, the transformed ref-
erence channels are used as the inputs to the RAEC block.
Error Recovery Non-linearity: The ERN tries to recover the true
residual echo signal from the error signal prior to the adaptive filter
update by applying a non-linear clipping function [25]. The RAEC
system utilizing ERN allows for robust update of the adaptive filter
coefficients even when strong near-end interference is present. Sev-
eral non-linear clipping functions are investigated in [25] based on
different distribution models of the residual echo and near-end sig-
nal. The statistical model where the residual echo signal and the
near-end signal are assumed to be Gaussian distributed and Laplace
distributed, respectively, has been shown to provide the best perfor-
mance [25–27]. The non-linear clipping function corresponding to
this signal model is expressed as

φ(Em[`]) =


√
Pe,m[`]

|Em[`]| Em[`], |Em[`]| ≥
√
Pe,m[`],

Em[`], otherwise,
(5)

where Pe,m[`] denotes the power spectral density (PSD) of the error
signal and is defined as

Pe,m[`] , E{|Em[`]|2} ≈ αPe,m[`− 1] + (1− α)|Em[`]|2 , (6)

where α is a smoothing coefficient. In vector form, the estimate
of the true error signal after applying ERN is defined as φ(e[`]) ,
[φ(E0[`]), . . . , φ(EN−1[`])]

T .
Adaptive Time-Frequency Dependent Step-Size: The regulariza-
tion parameter plays an important role in adaptive algorithms to sta-
bilize the filter update. When near-end noise/speech is present, the

step-size should be small in order to avoid divergence. When the
acoustic impulse response matrices change and as a result the error
signal increases, the step-size should increase for increased conver-
gence rate. The RAEC utilizes a noise-robust adaptive step-size [30]
which is generalized to the frequency domain in [31]. This adap-
tive step-size is extended to the STFT-domain crossband filters for
single-channel in [28] as (for m-th frequency-band)

µp,m,l[`] = µ
1

Px̄p,l[`]
× 1

1 + γδp,m,l[`]
, (7)

where δp,m,l[`] , P 2
e,m[`]/P 2

x̄p,l[`] is the cross-frequency depen-
dent regularization term, γ is a tuning parameter, and Px̄p,m[`] is
the PSD of the p-th transformed reference channel estimated as

Px̄p,m[`] , E{|Xp,m[`]|2} ≈ αPx̄p,m[`−1]+(1−α)|Xp,m[`]|2.

Using (7), we define the noise-robust adaptive step-size matrix
as (Mp[`])m+1,l+1 = µp,m,l[`] which is used in the expression for
the adaptive filter update matrix. The adaptive step-size in (7) in-
cludes a regularization term similar to the step-size of the normal-
ized LMS (NLMS) and a scaling term between 0 and 1. The sec-
ond term automatically scales down the step-size and improves the
robustness when near-end noise/speech is present. To improve the
overall MCAEC performance, we need to enhance the algorithm’s
reaction time in the presence of strong near-end noise/speech. Thus,
we propose to use a time-frequency dependent tuning parameter and
replace γ with γ0γp,m,l[`] where γ0 is a fixed tuning parameter and

γp,m,l[`] , E{δ−1
p,m,l[`]} ≈ αγγp,m,l[`− 1] + (1− αγ)

P 2
x̄p,l[`]

P 2
e,m[`]

,

where αγ is a smoothing factor close to 1. In the proposed method,
we estimate the expected value of δ−1

p,m,l[`], so the scaling term
in (7) finds the deviations from its long-term time-average. This
method applies different tuning parameters to different frequency-
bands based on the reference channel and error signal contents. The
parameter αγ provides a trade-off between adaptation stability and
tracking of the impulse response changes.

Finally, the estimated adaptive filters are updated as

Ĥi,p[`] = Ĥi,p[`− 1] + Mp[`] ◦ (φ(e[`]) xHp [`− i]), (8)

for i = 0, . . . ,M − 1 and p = 1, . . . ,K.
The a posteriori estimated echo can be expressed as d̂post[`] =∑K

p=1

∑M−1
i=0 Ĥi,p[`]xp[`− i]. The corresponding error signal vec-

tor is epost[`] = y[`]− d̂post[`].

5. NUMERICAL EXPERIMENTS

The numerical experiments were performed using the model of mi-
crophone array and loudspeaker array of the Sonos Beam, with
P = 5 loudspeakers. The room dimension was [6 6 3]m and the
microphone embedded on the Sonos Beam was located at [3 1 1]m.
The microphone signal (y[n]) was generated by convolving the loud-
speakers signals with the corresponding acoustic room impulse re-
sponses (RIR) (d[n] =

∑P
p=1 hp[n] ∗ xp[n]) and then adding near-

end speech and noise signal v(t): y[n] = d[n] + v[n]. The RIRs
were generated using the image source model. The loudspeaker sig-
nals (xp[n], p = 1, . . . , 5) were picked randomly from an internal
database of multi-channel loudspeaker signals for the Sonos Beam
at different volume levels. Rather than using simulations, this was



done to capture the internal signal processing and arraying applied
to the reference signals (i.e., upmixing/downmixing to 5 channels).

The noise and echo levels were controlled by varying the signal-
to-noise ratio (SNR = E{s2(t)}/E{n2(t)}) and the signal-to-echo
ratio (SER = E{s2(t)}/E{d2(t)}) values. The near-end speech
and noise signal were decomposed as v(t) = s(t)+n(t) where s(t)
denotes the target speech signal, and n(t) denotes the spatially and
temporally white Gaussian noise (AWGN).

The clean speech signals were taken randomly from the TIMIT
database. In the simulation, the target talker’s mouth was located
randomly in the room with respect to the center of the microphone
array. The speech sound pressure level (SPL) in the room is picked
from a normal distribution with mean µs = 67 dBA SPL, and
standard deviation σs = 9 dB. The target distance from the mi-
crophone array is uniformly distributed in [1, 4]m, its azimuth and
elevation are randomly selected to be in the interval [0◦, 180◦] and
[45◦, 135◦], respectively. We considered fixed SNR = 25 dB while
SER was varied from −35 to −5 dB, and the reverberation time
T60 ∈ {300, 600} ms. For each combination of SER and T60, we
randomly picked 1024 samples from the simulated microphone sig-
nals for our evaluations. The sampling frequency was 16 kHz, and
the frame length ofN = 512 samples andR = 256 were used in the
STFT implementation using Hann windows. The parameters used in
the algorithm implementation were: M = 10, µ = 0.04, α = 0.9,
αγ = 0.999, and ηth = 0.85. Only 1 crossband filter is used in the
simulation. In our simulation setup, we used fixed values for K to
better demonstrate its impact on the performance.

The proposed algorithm performance in terms of echo can-
cellation is evaluated using echo return loss enhancement (ERLE)
E{e2(t)}/E{y2(t)} in the frames that speech is not present,
and echo cancellation in speech presence (EC-SP) E{(e(t) −
v(t))2}/E{(y(t) − v(t))2} in the frames that speech is present.
The impact on the speech signal was evaluated by calculat-
ing the undesired near-end signal attenuation (NEA) defined as
E{v2(t)}/E{e2(t)} and the log-spectral distortion (LSD). Positive
values of NEA are a sign of speech cancellation which is extremely
undesirable, while its highly negative values demonstrate the pres-
ence of considerable residual echo. Ideally, NEA should be close
to 0 dB. For a fair comparison, we used NEA and LSD at −10 and
−15 dB SER to tune γ0 in different methods. We also report the
Short-Time Objective Intelligibility (STOI) metric as an indicator of
speech intelligibility. These metrics were then averaged over all the
1024 samples in our dataset. To demonstrate the impact of decor-
relation in our implementation, we compared 3 configurations: 1)
”5-Mono” was based on 5 Mono RAEC with no decorrelation, and
using fixed γ = 10.0 (tuned independently) in (7), 2) ”5-Decorr”
was based on the proposed decorrelation technique with γ0 = 0.3
and with fixedK = 5, and 3) ”3-Decorr” was based on the proposed
decorrelation technique with γ0 = 0.3 and fixed K = 3, where di-
mensionality reduction has been also applied. Note that, ”5-Mono”
and ”5-Decorr” have the same level of computational complexity (in
terms of number of floating point operations), while 3-Decorr re-
quires approximately 60% of operations of the other two methods.

The performance metrics are illustrated in Fig. 1 as a func-
tion of SER. Note that NEA and LSD values are very close in all
3 configurations since we used these metrics at higher SER values
to tune the algorithm. In lower SER values, the NEA is improved
when the decorrelation technique is applied. The echo cancellation
metrics (ERLE and EC-SP) show clearly the benefit of decorrela-
tion technique. Both 3-Decorr and 5-Decorr outperform 5-Mono.
Note that the STOI metric shows improvement in speech intelligi-
bility when the decorrelation technique is applied to the reference

Fig. 1. Performance metrics for T60 = 300 ms (left) and T60 = 600
ms (right)

channels while the echo cancellation is also improved. This demon-
strates the desirable performance improvement both in the echo can-
cellation metrics and in the speech distortion metric. It is notable that
3-Decorr slightly outperforms 5-Decorr which highlights the advan-
tage of using less channels. Lower number of channels leads to faster
convergence and improved robustness and stability during double-
talk. Considering the lower computational complexity of 3-Decorr,
the observed improvement demonstrates the benefits of the proposed
decorrelation technique on the AEC performance.

6. CONCLUSION

In order to mitigate the non-uniqueness problem associated with
multi-channel AEC, we proposed a time-domain adaptive decorre-
lation approach for the reference channels. This approach is extend-
able to a varying number of reference channels and does not modify
the loudspeaker signals, both key requirements in high-fidelity smart
music reproduction system capable of supporting multiple audio for-
mats like the Sonos Beam and the Sonos Arc, for which the algorithm
was designed and evaluated. The combination of this approach with
known robust AEC methods in the STFT domain, allows for excel-
lent ERLE performance, while not significantly distorting or attenu-
ating the near-end signal (i.e., the voice command).
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