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I Sonos voice enabled smart multi-channel soundbars

Sonos Beam Sonos Arc

(5 loudspeakers) (11 loudspeakers)

I Challenges

Number of loudspeakers and configurations varies by product

Industrial design, form factors, and HW modules are different

Performance requirements and CPU utilization budget is product dependent

Low speech-to-echo scenarios in music playback
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I Sonos voice enabled smart multi-channel soundbars

Sonos Beam Sonos Arc

(5 loudspeakers) (11 loudspeakers)

I Objectives

A robust and scalable multi-channel acoustic echo cancellation method

Easy to deploy on different devices, and different loudspeaker configurations

Fast prototyping, testing, and deployment



Relevant Work - MCAEC
I Non-uniqueness problem [Sondhi et al., 1995].

I Stereo AEC: [Gänsler and Benesty, 2000] and references therein

I Solutions targeted towards hands-free voice communication [Buchner and Kellermann, 2001; Buchner
et al., 2005; Buchner, 2008]

A notable industrial-strength solution: Microsoft Kinect for Xbox [Tashev, 2009]

I Two types of solutions to cope with the non-uniqueness problem

1) Add distortions to the loudspeaker signals
• Add independent random noise to each channel [Sondhi et al., 1995]
• Add perceptually inaudible signals to one of the channels using nonlinear processing [Gilloire and Turbin,

1998]
• Add a non-linearly processed source signal to the source signal itself [Benesty et al., 1998]
• Add a time-varying one-sample delay to the channels [Sugiyama et al., 2010]
• Resample the signals with a rate very close to one [Wada et al., 2011]
• Perceptually motivated criteria to reduce audible distortions [Buchner, 2008; Valin, 2016]
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Relevant Work

I Two types of solutions to cope with the non-uniqueness problem

2) Applying decorrelation filters to the loudspeaker signals
• Multi-channel adaptive filtering that jointly estimates the adaptive filters using extended RLS algorithm,

extended LMS [Benesty et al., 1996a]
• Kalman filters [Buchner et al., 2005]
• Affine projection algorithms [Benesty et al., 1996b].

I What is different in our scenario?

High-fidelity (Hi-Fi) loudspeaker systems
• Distortion-based solutions are considered unacceptable for the type of systems we are considering
• The added distortion interferes with the sound beamforming operations [Hooley, 2006], often sensitive to

slight changes in the reference path [Wegler et al., 2019]

CPU and memory budget
• The decorrelation filters require very high computational and memory resources
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I The microphone signal
y[n] = d[n] + v[n]

v[n]: near-end speech and/or noise
d[n]: acoustic echo with P loudspeaker channels

d[n] =
P∑

p=1

hp[n] ∗ xp[n]
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I The microphone signal
y[n] = d[n] + v[n]

v[n]: near-end speech and/or noise
d[n]: acoustic echo with P loudspeaker channels

d[n] =
P∑

p=1

hp[n] ∗ xp[n]

I Observation Model: Acoustic echo signal in the STFT domain [Avendano and Garcia, 2001; Avargel
and Cohen, 2007] (at `-th frame)

d[`] =
P∑

p=1

M−1∑
i=0

Hi,p[`] xp[`− i]

M: filter length in the multi-delay adaptive filter implementation [Soo and Pang, 1990]→ Reduces
the processing delay
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I The microphone signal
y[n] = d[n] + v[n]

v[n]: near-end speech and/or noise
d[n]: acoustic echo with P loudspeaker channels

d[n] =
P∑

p=1

hp[n] ∗ xp[n]

I Objective: Estimate the RIR matrices Hi,p and form the estimated echo

d̂[`] =
P∑

p=1

M−1∑
i=0

Ĥi,p[`− 1]xp[`− i]

Echo Cancellation: e[`] = y[`]− d̂[`] = v[`] + (d[`]− d̂[`])



Our Implementation

S. Bagheri, D. Giacobello Robust STFT Domain MCAEC with Adaptive Decorrelation ICASSP, June 2021 6 / 18



Decorrelation Idea

Lemma

Assume that the reference channels are stationary discrete-time random processes. Applying an
orthogonalization transformation to the reference channels in the time-domain can be utilized to
transform the problem into an equivalent set of independent and parallel adaptive filters in the
frequency-domain.

I Goal: Find an orthogonalization transformation matrix

Based on the reference channels cross-correlation matrix

I The dimension of the problem can be reduced to K transformed channels

I Echo signal in the transformed space

d̂[`] =
K∑

p=1

M−1∑
i=0

Ĥi,p[`− 1] xp[`− i]
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Decorrelation Method

I Objective: Find a decorrelation matrix U[K] of size P× K

I Initialization: First L frames

Estimate the sample covariance matrix

Perform SVD on the sample covariance matrix

K← number of singular values that satisfy
σi

σ1
≥ δ for some small value δ

U[K] ← K singular-vectors

I Adaptive Time-Tracking Steps: At frame ` > L

Update the covariance matrix (using exponential smoothing with smoothing factor αR)

Calculate a measure of distance between current and previous covariance matrices→ we use
matrix cosine similarity (MCS) metric

If MCS ≤ ηth =⇒ Update stored covariance matrix. Perform SVD to update K and U[K]
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Robust Adaptive Single-Channel AEC
I NLMS Adaptive Filter

Ĥi,p[`] = Ĥi,p[`− 1] + Mp[`] ◦
(
φ(e[`]) xH

p [`− i]
)

i = 0, . . . ,M− 1 and p = 1, . . . ,K

◦ → Hadamard (element-wise) product operation

I xp[`]: transformed reference signal

I φ(e[`]): estimate of the true error signal after applying Error Recovery Non-linearity (ERN)

I Mp[`]: noise-robust adaptive step-size matrix

I The a posteriori estimated echo

d̂post[`] =

K∑
p=1

M−1∑
i=0

Ĥi,p[`] xp[`− i]
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Error Recovery Non-linearity

I Goal: Robust update of the adaptive filter coefficients even in the presence of strong near-end
interference

I Method: Recover the true residual echo from the error signal [Wada and Juang, 2012]

I Non-linear clipping functions are proposed based on distribution models of the residual echo
and near-end signal [Wada and Juang, 2012]

Residual echo signal: Gaussian distributed; Near-end signal: Laplace distributed

The non-linear clipping function

φ(Em[`]) =


√

Pe,m[`]

|Em[`]|
Em[`], |Em[`]| ≥

√
Pe,m[`],

Em[`], otherwise,

Pe,m[`]→ the power spectral density (PSD) of the error signal

PSDs are estimated by exponential smoothing with factor α
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Noise-robust Adaptive Step-size

I Goal: Small step-size when near-end noise/speech is present
Increased step-size when the acoustic impulse response matrices change and the error signal
increases

I Method: Adaptive step-size in the STFT-domain crossband filters for single-channel [Wung
et al., 2014] (

Mp[`]
)

m+1,l+1 = µ× 1
Px̄p,l[`]

× 1
1 + γ δp,m,l[`]

µ→ adaptation parameter between 0 and 1

Px̄p,m[`]→ PSD of the transformed reference signal

δp,m,l[`]→ error PSD to reference PSD ratio : P2
e,m[`]/P2

x̄p,l[`]

γ → tunable regularization parameter

• Time-frequency dependent tuning parameter: γ → γ0 γp,m,l[`]
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Simulation Setup

Target
Speaker

6 m

6 m

Speakers 
from 

TIMIT DB

AWGN Noise Field 
SNR = 25 dB

3 m 1 m
Sampling frequency 16 KHz
Loudspeaker array Sonos Beam
# of Loudspeakers 5
Frame length 512
Frame overlap (R) 256
Window function Hann
T60 300, 600 ms
# of crossband filters 1
RIR generation Image source method
Loudspeaker data-set Internal multi-channel DB
Speech SPL N (67, 9)
SER {−35,−5} dB
Talker distance U(1m, 4m)
Talker azimuth U(0◦, 180◦)
Talker elevation U(45◦, 135◦)

Parameters used to implement the proposed algorithm

M = 10 µ = 0.04 α = 0.9

αγ = 0.999 ηth = 0.85
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Simulation Setup
Test Scenarios Configurations:

Test Name Description flops
”5-Mono” 5 Mono RAEC, no decorrelation, γ = 10 baseline
”5-Decorr” proposed decorrelation technique, γ0 = 0.3, fixed K = 5 baseline
”3-Decorr” proposed decorrelation technique, γ0 = 0.3, fixed K = 3 60% of baseline

Evaluation Metrics:

I Echo return loss enhancement (ERLE):
E{e2(t)}
E{y2(t)}

I Echo cancellation in speech presence (EC-SP):
E{(e(t)− v(t))2}
E{(y(t)− v(t))2}

I Near-end attenuation (NEA):
E{v2(t)}
E{e2(t)}

I Log-spectral distortion (LSD)

I Short-Time Objective Intelligibility (STOI)
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Simulation Results

Observations from performance results:

I Improvement in ERLE and EC-SP

I Same NEA and LSD values→ used them at higher
SER values to tune the algorithm

I STOI shows improvement in speech intelligibility when
the decorrelation technique is applied

I Lower number of channels⇒ faster convergence and
improved robustness and stability during double-talk
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Conclusions

A time-domain adaptive decorrelation approach for the reference channels

I Applicable to a varying number of reference channels, and different loudspeaker
configurations

I Does not modify the loudspeaker signals −→ Suitable for Hi-Fi systems

I Very low computational complexity and memory requirements

I Combined this approach with robust AEC methods in the STFT domain

Very good ERLE performance

Does not significantly distort or attenuate the near-end signal (i.e., the voice command)
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Q & A

Thank You For Your Attention!
saeed.sereshki@sonos.com
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