Robust STFT Domain Multi-Channel Acoustic Echo Cancellation with Adaptive Decorrelation of the Reference Signals

Saeed Bagheri Daniele Giacobello

SONOS

S. Bagheri, D. Giacobello

Robust STFT Domain MCAEC with Adaptive Decorrelation

Introduction and Motivations

Sonos voice enabled smart multi-channel soundbars

Sonos Beam (5 loudspeakers) Sonos Arc (11 loudspeakers)

Introduction and Motivations

Sonos voice enabled smart multi-channel soundbars

Challenges

- Number of loudspeakers and configurations varies by product
- Industrial design, form factors, and HW modules are different
- Performance requirements and CPU utilization budget is product dependent
- Low speech-to-echo scenarios in music playback

Introduction and Motivations

Sonos voice enabled smart multi-channel soundbars

Objectives

- A robust and scalable multi-channel acoustic echo cancellation method
- Easy to deploy on different devices, and different loudspeaker configurations
- Fast prototyping, testing, and deployment

Relevant Work - MCAEC

- Non-uniqueness problem [Sondhi et al., 1995].
- Stereo AEC: [Gänsler and Benesty, 2000] and references therein
- Solutions targeted towards hands-free voice communication [Buchner and Kellermann, 2001; Buchner et al., 2005; Buchner, 2008]
 - A notable industrial-strength solution: Microsoft Kinect for Xbox [Tashev, 2009]
- Two types of solutions to cope with the non-uniqueness problem
 - $1)\;$ Add distortions to the loudspeaker signals
 - Add independent random noise to each channel [Sondhi et al., 1995]
 - Add perceptually inaudible signals to one of the channels using nonlinear processing [Gilloire and Turbin, 1998]
 - Add a non-linearly processed source signal to the source signal itself [Benesty et al., 1998]
 - Add a time-varying one-sample delay to the channels [Sugiyama et al., 2010]
 - Resample the signals with a rate very close to one [Wada et al., 2011]
 - Perceptually motivated criteria to reduce audible distortions [Buchner, 2008; Valin, 2016]

Relevant Work

- Two types of solutions to cope with the non-uniqueness problem
 - 2) Applying decorrelation filters to the loudspeaker signals
 - Multi-channel adaptive filtering that jointly estimates the adaptive filters using extended RLS algorithm, extended LMS [Benesty et al., 1996a]
 - Kalman filters [Buchner et al., 2005]
 - Affine projection algorithms [Benesty et al., 1996b].
- What is different in our scenario?
 - High-fidelity (Hi-Fi) loudspeaker systems
 - · Distortion-based solutions are considered unacceptable for the type of systems we are considering
 - The added distortion interferes with the sound beamforming operations [Hooley, 2006], often sensitive to slight changes in the reference path [Wegler et al., 2019]
 - CPU and memory budget
 - · The decorrelation filters require very high computational and memory resources

Problem Definition

► The microphone signal

$$y[n] = d[n] + v[n]$$

v[n]: near-end speech and/or noise d[n]: acoustic echo with P loudspeaker channels

$$d[n] = \sum_{p=1}^{P} h_p[n] * x_p[n]$$

The microphone signal

$$y[n] = d[n] + v[n]$$

v[n]: near-end speech and/or noise d[n]: acoustic echo with P loudspeaker channels

$$d[n] = \sum_{p=1}^{P} h_p[n] * x_p[n]$$

► Observation Model: Acoustic echo signal in the STFT domain [Avendano and Garcia, 2001; Avargel and Cohen, 2007] (at *l*-th frame)

$$\mathbf{d}[\ell] = \sum_{p=1}^{p} \sum_{i=0}^{M-1} \mathbf{H}_{i,p}[\ell] \ \mathbf{x}_p[\ell-i]$$

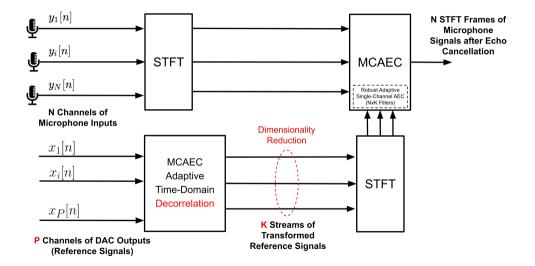
M: filter length in the multi-delay adaptive filter implementation [Soo and Pang, 1990] \rightarrow Reduces the processing delay

S. Bagheri, D. Giacobello

The microphone signal

$$y[n] = d[n] + v[n]$$

v[n]: near-end speech and/or noise d[n]: acoustic echo with *P* loudspeaker channels


$$d[n] = \sum_{p=1}^{P} h_p[n] * x_p[n]$$

Objective: Estimate the RIR matrices **H**_{*i*,*p*} and form the estimated echo

$$\hat{\mathbf{d}}[\ell] = \sum_{p=1}^{p} \sum_{i=0}^{M-1} \widehat{\mathbf{H}}_{i,p}[\ell-1]\mathbf{x}_{p}[\ell-i]$$

Echo Cancellation: $e[\ell] = y[\ell] - \hat{d}[\ell] = v[\ell] + (d[\ell] - \hat{d}[\ell])$

Our Implementation

Lemma

Assume that the reference channels are stationary discrete-time random processes. Applying an orthogonalization transformation to the reference channels in the time-domain can be utilized to transform the problem into an equivalent set of independent and parallel adaptive filters in the frequency-domain.

- Goal: Find an orthogonalization transformation matrix
 - Based on the reference channels cross-correlation matrix
- ► The dimension of the problem can be reduced to K transformed channels
- Echo signal in the transformed space

$$\hat{\mathbf{d}}[\ell] = \sum_{p=1}^{\mathbf{K}} \sum_{i=0}^{M-1} \widehat{\overline{\mathbf{H}}}_{i,p}[\ell-1] \, \overline{\mathbf{x}}_p[\ell-i]$$

Decorrelation Method

- ► Objective: Find a decorrelation matrix U_[K] of size P × K
- ► Initialization: First L frames
 - Estimate the sample covariance matrix
 - Perform SVD on the sample covariance matrix
 - $K \leftarrow$ number of singular values that satisfy $\frac{\sigma_i}{\sigma_1} \ge \delta$ for some small value δ
 - $\blacksquare \ \mathbf{U}_{[K]} \leftarrow K \text{ singular-vectors}$
- Adaptive Time-Tracking Steps: At frame $\ell > L$
 - Update the covariance matrix (using exponential smoothing with smoothing factor α_R)
 - Calculate a measure of distance between **current** and **previous** covariance matrices → we use matrix cosine similarity (MCS) metric
 - If MCS $\leq \eta_{th} \Longrightarrow$ Update stored covariance matrix. Perform SVD to update K and $U_{[K]}$

Robust Adaptive Single-Channel AEC

NLMS Adaptive Filter

$$\widehat{\overline{\mathbf{H}}}_{i,p}[\ell] = \widehat{\overline{\mathbf{H}}}_{i,p}[\ell-1] + \mathbf{M}_p[\ell] \circ \left(\phi(\mathbf{e}[\ell]) \ \overline{\mathbf{x}}_p^H[\ell-i]\right)$$

i = 0, ..., M - 1 and p = 1, ..., K

 $\circ \rightarrow$ Hadamard (element-wise) product operation

- ▶ $\bar{\mathbf{x}}_p[\ell]$: transformed reference signal
- $\phi(\mathbf{e}[\ell])$: estimate of the true error signal after applying Error Recovery Non-linearity (ERN)
- $\mathbf{M}_{p}[\ell]$: noise-robust adaptive step-size matrix
- ► The *a posteriori* estimated echo

$$\hat{\mathbf{d}}_{\mathsf{post}}[\ell] = \sum_{p=1}^{K} \sum_{i=0}^{M-1} \widehat{\overline{\mathbf{H}}}_{i,p}[\ell] \ \overline{\mathbf{x}}_p[\ell-i]$$

Error Recovery Non-linearity

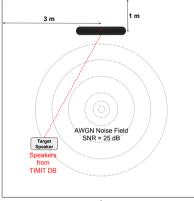
- Goal: Robust update of the adaptive filter coefficients even in the presence of strong near-end interference
- Method: Recover the true residual echo from the error signal [Wada and Juang, 2012]
- Non-linear clipping functions are proposed based on distribution models of the residual echo and near-end signal [Wada and Juang, 2012]
 - Residual echo signal: Gaussian distributed; Near-end signal: Laplace distributed
 - The non-linear clipping function

$$\phi(E_m[\ell]) = \begin{cases} \frac{\sqrt{P_{e,m}[\ell]}}{|E_m[\ell]|} E_m[\ell], & |E_m[\ell]| \ge \sqrt{P_{e,m}[\ell]}, \\ E_m[\ell], & \text{otherwise}, \end{cases}$$

 $P_{e,m}[\ell] \rightarrow$ the power spectral density (PSD) of the error signal

PSDs are estimated by exponential smoothing with factor α

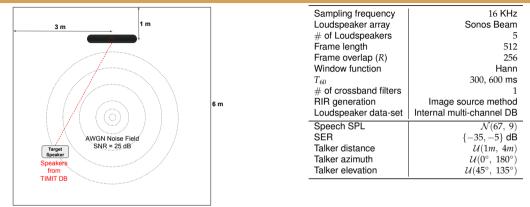
Noise-robust Adaptive Step-size


- Goal: Small step-size when near-end noise/speech is present Increased step-size when the acoustic impulse response matrices change and the error signal increases
- Method: Adaptive step-size in the STFT-domain crossband filters for single-channel [Wung et al., 2014]

$$ig(\mathbf{M}_p[\ell]ig)_{m+1,l+1} = oldsymbol{\mu} imes rac{1}{P_{ar{x}_p,l}[\ell]} imes rac{1}{1+oldsymbol{\gamma} \, \delta_{p,m,l}[\ell]}$$

- $P_{\bar{x}_p,m}[\ell] \rightarrow \mathsf{PSD}$ of the transformed reference signal
- $\delta_{p,m,l}[\ell] \to \text{error PSD}$ to reference PSD ratio : $P_{e,m}^2[\ell]/P_{\bar{x}_{p,l}}^2[\ell]$
- $\blacksquare \ \gamma \rightarrow \text{tunable regularization parameter}$
 - Time-frequency dependent tuning parameter: $\gamma \rightarrow \gamma_0 \gamma_{p,m,l}[\ell]$

Simulation Setup



6 m

Sampling frequency	16 KHz
Loudspeaker array	Sonos Beam
# of Loudspeakers	5
Frame length	512
Frame overlap (R)	256
Window function	Hann
T_{60}	300, 600 ms
# of crossband filters	1
RIR generation	Image source method
Loudspeaker data-set	Internal multi-channel DB
Speech SPL	$\mathcal{N}(67, 9)$
SER	$\{-35, -5\} dB$
Talker distance	$\mathcal{U}(1m, 4m)$
Talker azimuth	$\mathcal{U}(0^\circ, 180^\circ)$
Talker elevation	$\mathcal{U}(45^\circ,\ 135^\circ)$

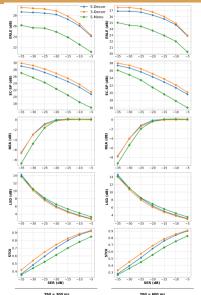
6 m

Simulation Setup

6 m

Parameters used to implement the proposed algorithm

M = 10 $\mu = 0.04$ $\alpha = 0.9$ $\alpha_{\gamma} = 0.999$ $\eta_{\text{th}} = 0.85$


Test Scenarios Configurations:

Test Name	Description	flops
"5-Mono"	5 Mono RAEC, no decorrelation, $\gamma = 10$	baseline
"5-Decorr"	proposed decorrelation technique, $\gamma_0 = 0.3$, fixed $K = 5$	baseline
"3-Decorr"	proposed decorrelation technique, $\gamma_0 = 0.3$, fixed $K = 3$	60% of baseline

Evaluation Metrics:

- Echo return loss enhancement (ERLE): $\frac{\mathbb{E}\{e^2(t)\}}{\mathbb{E}\{y^2(t)\}}$
- ► Echo cancellation in speech presence (EC-SP): $\frac{\mathbb{E}\{(e(t) v(t))^2\}}{\mathbb{E}\{(y(t) v(t))^2\}}$
- Near-end attenuation (NEA): $\frac{\mathbb{E}\{v^2(t)\}}{\mathbb{E}\{e^2(t)\}}$
- Log-spectral distortion (LSD)
- Short-Time Objective Intelligibility (STOI)

Simulation Results

Observations from performance results:

- Improvement in ERLE and EC-SP
- Same NEA and LSD values → used them at higher SER values to tune the algorithm
- STOI shows improvement in speech intelligibility when the decorrelation technique is applied
- ► Lower number of channels ⇒ faster convergence and improved robustness and stability during double-talk

A time-domain adaptive decorrelation approach for the reference channels

- Applicable to a varying number of reference channels, and different loudspeaker configurations
- ► Does not modify the loudspeaker signals → Suitable for Hi-Fi systems
- Very low computational complexity and memory requirements
- Combined this approach with robust AEC methods in the STFT domain
 - Very good ERLE performance
 - Does not significantly distort or attenuate the near-end signal (i.e., the voice command)

Thank You For Your Attention!

saeed.sereshki@sonos.com

References I

- Y. Avargel and I. Cohen. System identification in the short-time fourier transform domain with crossband filtering. *IEEE Transactions on Audio, Speech, and Language Processing*, 15(4):1305–1319, 2007. ISSN 1558-7916. doi: 10.1109/TASL.2006.889720.
- C. Avendano and G. Garcia. STFT-based multi-channel acoustic interference suppressor. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2001.
- J. Benesty, P. Duhamel, and Y. Grenier. Multi-channel adaptive filtering applied to multi-channel acoustic echo cancellation. In *European* Signal Processing Conference (EUSIPCO), 1996a.
- J. Benesty, P. Duhamel, and Y. Grenier. A multichannel affine projection algorithm with applications to multichannel acoustic echo cancellation. *IEEE Signal Processing Letters*, 3(2):35–37, 1996b. ISSN 1070-9908. doi: 10.1109/97.484209.
- J. Benesty, D. R. Morgan, and M. M. Sondhi. A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. *IEEE Transactions on Speech and Audio Processing*, 6(2):156–165, 1998. ISSN 1063-6676. doi: 10.1109/89.661474.
- H. Buchner. Acoustic echo cancellation for multiple reproduction channels: from first principles to real-time solutions. In *ITG Conference on Voice Communication*, 2008.
- H. Buchner and W. Kellermann. Acoustic echo cancellation for two and more reproduction channels. In International Workshop on Acoustic Signal Enhancement (IWAENC), 2001.
- H. Buchner, J. Benesty, and W. Kellermann. Generalized multichannel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. *Signal Processing*, 85(3):549–570, 2005.
- T. Gänsler and J. Benesty. Stereophonic acoustic echo cancellation and two-channel adaptive filtering: an overview. International Journal of Adaptive Control and Signal Processing, 14(6):565–586, 2000.
- A. Gilloire and V. Turbin. Using auditory properties to improve the behaviour of stereophonic acoustic echo cancellers. In *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 1998.
- T. Hooley. Single box surround sound. Acoustical science and technology, 27(6):354–360, 2006.

- M. M. Sondhi, D. R. Morgan, and J. L. Hall. Stereophonic acoustic echo cancellation An overview of the fundamental problem. IEEE Signal Processing Letters, 2(8):148–151, 1995. ISSN 1070-9908. doi: 10.1109/97.404129.
- J. S. Soo and K. K. Pang. Multidelay block frequency domain adaptive filter. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 38(2):373–376, 1990. ISSN 0096-3518. doi: 10.1109/29.103078.
- A. Sugiyama, Y. Mizuno, A. Hirano, and K. Nakayama. A stereo echo canceller with simultaneous input-sliding and sliding-period control. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2010.
- I. Tashev. Sound capture and Processing: Practical Approaches. John Wiley & Sons, 2009.
- J.-M. Valin. Channel decorrelation for stereo acoustic echo cancellation in high-quality audio communication. *arXiv preprint arXiv:1603.03364*, 2016.
- T. S. Wada and B. H. Juang. Enhancement of residual echo for robust acoustic echo cancellation. *IEEE Transactions on Audio, Speech, and Language Processing*, 20(1):175–189, 2012. ISSN 1558-7916. doi: 10.1109/TASL.2011.2159592.
- T. S. Wada, J. Wung, and B. H. Juang. Decorrelation by resampling in frequency domain for multi-channel acoustic echo cancellation based on residual echo enhancement. In *IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, 2011.
- K. Wegler, F. Wendt, and R. Höldrich. How level, delay, and spatial separation influence the echo threshold. DAGA, 2019.
- J. Wung, D. Giacobello, and J. Atkins. Robust acoustic echo cancellation in the short-time fourier transform domain using adaptive crossband filters. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2014. doi: 10.1109/ICASSP.2014.6853807.